Awww%mw

e
-

7

o
e

= e
-

o

e

e

S
e




50

54

55

56

. 57

58

ERRATA

“ON THE STABILITY OF POISEUILLE PIPE FLOW"

by H. J. Crowder and €. Dalton
University of Houston
NASA Grant NGR-44-005-065

Figure 3c should be labeled Figure 3b

The ordinate on
instead of F

Figure 4a should be labeled G

The ordinate on Figure 4b

instead of F

The ordinate on
instead of F

The ordinate on
instead of F

- The ordinate on
instead of F

Figure

Figure

Figure

4c

44

4e

should be

should be
should be

should be

labeled G
labeled G
labeled G

labeled G



University of Houston
Department of Mechanical Engineering
Houston, Texas 77004

ON THE STABILITY
OoF
POISEUILLE PIPE FLOW

by

Henry J. Crowder
and
Charles Dalton
(Principal Investigator)

Technical Report No. 1

August, 1969

Sponsor: Manned Spacecraft Center
National Aeronautics and Space Administration

Contract: NGR-44-005-065
Reproduction in whole or in part is permitted for any

purpose of the United States Government. Distribution of
the report is unlimited.



ON THE STABILITY
OF
POISEUILLE PIPE FLOW

by

Henry J. Crowder
and

Charles Dalton
(Principal Investigator)

Prepared under Contract NGR - 44 - 005 - 065 by the
University of Houston, Houston, Texas 77004 for the
Manned Spacecraft Center, NASA, Houston, Texas.



ABSTRACT

The problem of the stability of Poiseuille pipe flow was
studied numerically. The finite-difference equations which were
solved are approximations to the nonlinear, axisymmetric, Navier-
Stokes equations in cylindrical coordinates subject to a stream-
function perturbation. The disturbance to the stream function
is of the form Am(Rf/Z - R§/4)sin(Ar£) which is axisymmetric,
oscillatory and fixed in space.

The resulting solutions show the experimentally observed
instability of the stream function and vorticity at Reynolds
numbers of 10,000 and 100,000 for a finite-amplitude disturbance,
Am = 1.0. The experimentally observed stability at a Reynolds
number of 1000 and Am = 1.0 was also found. At a Reynolds number
of 3000 and Am'= 1.0, a neutral stability effect was noted. For
a small-amplitude case, Am = 0.1, at a Reynolds number of 100,000,

the solution represents a damped disturbance which is consistent

with classical small-amplitude theory.
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CHAPTER I. INTRODUCTION

The problem of the stability of Poiseuille pipe flow has been
of interest since it was first studied experimentally by Osborne
Reynolds [14] in 1880. For the purpose of correlating his data, he

defined a parametric grouping, now called the Reynolds number,

where V is a reference velocity, R is a reference length, and v
is the kinematic viscosity of the fluid.

The object of all analytical and experimental approaches to
this stability problem has been to determine the minimum Reynolds
number at which fully developed laminar flow in a pipe undergoes
the transitioﬁ to turbulence at some position in the flow field.

Experimental approaches have usually shown the transition to
turbulence, but both the minimum value of the Reynolds number for
transition, and the maximum value of the Reynolds number at which
laminar flow could be sustained have varied widely among the
various experiments [3,8,9,14,15,20]; Perhaps the most iméortant
experimental results to this investigafion are those presented by

Kuethe [8] in 1956 and extended by Leite [9] in 1958.



In ﬁis experiments with air, Kuethe found that at a Reynolds
number of 12,000 his disturbance generator, a frustrum of a coni-
cal airfoil of nondimensional radius 0.7, created turbulence
without oscillation. At a Reynolds number ofA8,OOO any amplitude
of oscillation was sufficient to cause turbulence. But, at a
Reynolds number of 4,000, the onset of turbulence was a definite
function of the amplitude of the oscillation at 25 Hz.

Leite changed the disturbance generator in the experimental
apparatus to a thin sleeve oscillating near the wall. He found
that for no oscillation the flow was laminar up to a Reynolds
number of 20,000. He also found that the flow'damped small
oscillations up to a Reynolds number of 13,000, which was the
limit of his experiments. In addition it was found that at fre-
guencies above 45 Hz, all disturbances were damped over a short
distance from éhe generator.

Previous analytical treatments of the stability problem
have not been'as successful as experimental approaches. The
classical approach, first attempted by Sexl [8] in 1927, uses
linearized small-perturbation techniques, many of which were
developed for this and similar problems.

This approach begins with one of the nondimensional forms

of the Navier-Stokes equations for incompressible flow,

\7t+x7-vx7=—v;>+——v3\7, (1.1)



and the‘equation of continuity for incompressible flow,
vV eV=0, (1.2)

where V is the vector velocity, p is the pressure, Re is the
Reynolds number, and V and Vv® are the applicable differential
operators given by Irving and Millineux [7]. 1In the present
method of analysis, one assumes that any quantity, g, is given
by

do = Q + d, (1.3)

where Q is a mean-flow quantity and g is a perturbation quantity.

Further, one assumes that g is given by
qg= %(r) exp(ioaz + in6 - iact), (1.4)

where o (the phase velocity) is complex, n (the mode number) is

an integer, and c (the wave number) is real. One then substitutes
equation (1.4) into equation (1.3) and the resulting expression

is substituted into equations (1.1) and (1.2). One retains only
those terms which are first order in the exponential function,

which is then divided out of the equations, to obtain [2],

iow + u’ + = 4+ 2 _ o, (1.5.1)
r r .
. = =7 . 1 " 1, 3 na
iog(W - c)w + W'a + iop = E—[w + Tw' - (o +-;;)w], (1.5.2)
e
- 1 241 2i
fa(W ~-c) u+ p’ = %—[u” + ;u' - (o® + nr: Yu - —%gw],(l‘S.B)

and



= in 11, 1, s nP+l1 Zin]
ig(W - o)v + - P = E;{? + Vo= (® + ——;g)v + =B u (1L.5.4)

where W is the main-flow velocity, u, v, and w are the perturba-
tion velocity components in the r, 6, and =z directions, respec-
tively, and primes indicate differeritiation with respect to the
radial coordinate, r.

After assuming that n = 0, that is, the flow is axially
symmetric, the pressure p is eliminated between equations (1.5.2)

and (1.5.3), and the resulting equation is simplified using equa-

tion (1.5.1) to obtain

R |

7
ig(W - ¢)(w/ - igu) =—u+ Wu =

1 " 1l . 1 ’ 2. .7 . " ig . 38
——{w + =W - 3w - ag°w - ioqu" -—u’ + ig ul. 1.6
Re r r o r o ( )

We next define a stream function, ¥, by the equations

I
W=, (1.7.1)
and .
= - -;19 Ve (1.7.2)

which identically satisfies the continuity equation. Substitution
of equations (1.7) into equation (1.6) and simplification results

in the Orr-Sommerfield equation for axisymmetric Poiseuille pipe

flow,



oA I |

el - -y - - @)y =

_1_-__ m 2_ " _3__ " _3__ &g._z__ ) _(_1:_ &\
Re[w e G - & -2 - & - i) ae)

Since this is the equation for Poiseuille pipe flow,

W=1-1r?, (1.9)

. . WI 14 .
and as a consequence of equation (1.9), the term 1ar(; > ¥ in equa-

tion (1.8) vanishes identically.

Solutions to equation (1.8) have generally been obtained by
assuming values for o and Re and solving for the eigenfunctions
¥ and eigenvalues c. Those solutions for which ¢ is zero yield
the so-called neufral stability curve as a function of o and Re.
All of the authors who have attempted solutions for the zeroth
mode, n = 0, have reached the conclusion that the disturbance is
damped [5,13,16,17]. These analytical results are not too sur-
prising due to the experimental results of Kuethe and Leite.

For the first mode, n = 1, thg corresponding form of equa-
tion (1.8) cannot be derived but both analytical and experimental
approaches to this problem have been attempted. Bhat [3], in
1966, experimentally obtained instability for this mode at
Reynolds numbers higher than 2,130 but he does not specify the
amplitude of the disturbance he used. Lessen, Sadler and Liu [10]
in 1968 reported an accompanying linear analysis. The authors

found no instability for Reynolds numbers up to 30,000.



The failure of this analytical approach for Poiseuille pipe
flow contrasts with the success of the corresponding approach for
plane-Poiseuille flow by Thomas [22] in 1953, who numerically
solved the analog of equation (1.8). Thomaé' solution shows the
experimentally observed instability of plane-Poiseuille flow,
although the minimum Reynolds number obtained was 5,000, which
was too high. It was shown by Meksyn and Stuart [12], Stuart
{19], and Meksyn [11] that Thomas® results could be brought more
into line with experimental results by including some of the non-
linear terms of the differential equations in establishing the
equations to be solved. 1In the final pape% of the sequence,
Meksyn succeeds in reducing the theoretical minimum critical
Reynolds number from 5,000 to approximately 1,500 as compared
with the experimentally observed value of approximately 1,000.

Another épproach to the Poiseuille pipe flow stability prob-
lem has become possible with the advent of large-scale digital
computers. This approach consists of solving the governing dif-
ferential eqﬁations (1.1) and (1.2) in their nonlinear form for
either small or large amplitude disturbances which are imposed
on the flow field. Due to limited time and/or limited memory
available on the present-generation computers, this approach has
been restricted to treating the problem in two dimensions.

In the case of plane-~Poiseuille flow, this is not a severe

limitation since Squire [18] in 1933 was able to obtain a



coordinate transformation which reduces the three-dimensional
eigenvalue problem to an equivalent tﬁo—dimensional problem. It
should be noted that there is an effective viscosity increase
caused by the transformation. The effective &iscosity increase
causes the transition Reynolds number for the equivalent two-
dimensional problem to be greater than the transition Reynolds
number for the untransformed three-dimensional problem. It

should also be noted that use of the Squire transformation gives
the eigenvalues but not eigenfunctions of a three-dimensional
disturbance by treating an equivalent two-dimensional disturbance [2].
This theorem is gengrally taken to mean that the most unstable dis-
turbance is two-dimensional. Unfortunately, due to the geometry

of Poiseuille pipe flow, no such coordinate transformation is
possible. Therefore, it is not known a priori that two-dimensional
disturbances aré more unstable than three-dimensional ones. Admit-
ting the possibility of a more unstable three-dimensional distur-
bance, we feel that a solution to the two-dimensional, nonlinear
problem should show the experimentally observed instability.

Due to the experimental results which have been presented, it
was decided that the disturbance should be oscillatory, axially
symmetric, of finite, but small, amplitude, and of low frequency.
The criterion for instabili£y will be taken to be the decay of a
stream function disturbance. If the stream function disturbance

does not decay with downstream axial distance for a given Reynolds



number, then the flow is deemed unstable. If the disturbance
decays with downstream axial distance for a given value of the
Reynolds number, then the flow is taken to be stable.
Therefore, it is this approach to the prbblem of the sta-
bility of Poiseuille pipe flow which has been taken in this

work.



CHAPTER II. FORMULATION OF PROBLEM

Since it was decided to treat the stability of Poiseuille
pipe flow in two dimensions, we assume that the flow is axially
symmetric; therefore, all derivatives with respect to the azi-
muthal coordinate, 6, in equations (1.1) and (1.2) are assumed
to be identically zero. Further, we have assumed that the azi-
muthal velocity component, v, is identically zero. Therefore,

the forms of equations (1.1) and (1.2) which we choose to solve

are
+ uu_ + wu_ = . Ir +'2£ = ] (2.1.a)
Yy U, +wa, = -p. + RLrr " r 2 T Uzl ik
1 wf
I _ — - .b
wt + uwi + wwz pz.+ Re[?ir + ” + sz ’ (2.1.b)
u
and u +—+ w_ = 0. (2.1.c)
r r z

where u and ﬁ are the velocity components in the radial and axial
directions, respectively, p is the pressure, and Re is the Reynolds
number, and subscripts denote partial differentiation with respect
to the indicated coordinate.

The Reynolds number in this case is given by

R =

wd_ (2.2)
e v
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where W is the space-average velocity, d is the pipe diameter, and v

is the kinematic viscosity of the fluid.

The pressure is eliminated from equations (2.1) by differen-
tiation of equation (2.1.b) with reséect to f and subtracting the
result from equation (2.1.a) differentiated with respect to z.
After defining the vorticity, , by

Q:: u - w ] (2.3)

the result of the above operation may be expressed as

1r.1
a + () + (W) = Ei‘?(rmr)r v ol (2.4)

We next define a stream function, ¢, by

Y
u=-=, (2.5.a)

and

w =, (2-5-b)

such that equation (2.1.c) is identically satisfied.
Therefore, in terms of the stream function and vorticity,

equations (2.4) and (2.3) may be written as

and
Q= - %UZZ 4 r(g-‘i)r] (2.6.b)

Now, we make a change of variables such that upper case

quantities refer to the main flow while lower case guantities
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refer to the secondary flow. Therefore, let

¥(r,z,t)

and

il

r,z,t)

Since F and G are main flow quantities for Poiseuille pipe

flow, they are given by

P(r) = 2r? - 1%,
2 4
and
G(r) = 2r., (2.8.b)
Therefore, equations (2.6) can be written as
fg
- gy - r z 2 _ i_[:l ]
=N fz(r)r +—/— + (1-rf)g, = R_ (S ), +9,, (2.9.a)
and
fr
fzz + r(}-—)r = -rg. (2.9.Db)

It should be noted that to this point in the development no
assumption has been made which linearized equations (2.9); there-
fore, the equations are suitable fdr describing the behavior of
the flow for both large and small amplitude disturbances.

Boundary Conditions

Preceding the development of the boundary conditions for the
problem, we will establish the flow field on which equations (2.9)
will be solved. This rectangular dimensionless field is shown in:

Figure 1, where the length L is much greater than 1 and much

greater than Z;. The value of L should be such that an increase

F(r) + f(r,z,t), (2.7.a)

G(r) + g(r,z,t). (2.7.D)

(2.8.a)
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0 J\ - F
0 Za L

Figure 1. Flow Field

in L causes no change in the solution obtainéd. The line Z = 0
is arbitrarily placed in the flow with the exception that we
initially assume that fully developed flow exists within and on
the boundaries of the field of interest. The line r = 1 is the
wall of the pipe, while the line r = 0 is the centerline of the
pipe.

The boundary conditions appliéd at r = 1 are the normal con-

ditions of no-slip and no flow through a solid boundary

£
u = - r—z = 0, (2.10.a)

£
W=r_r= 0. (2.10.b)

Axial symmetry at the center line, r = 0, implies that

£f =u_ =g =w_=0. (2.10.¢)
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Since the governing differential equations (2.9) are
singular on the line r = 0 and we demand that every quantity

be bounded on that line, we have
u=1uUu =W =g=f = £ =g =9g_ = 0, (2'10.d)

On the line z = 0 we have assumed that fully developed pipe

flow must exist. Therefore, we have

g=0onz=0. (2.10.e.1)

In order to make the solution as free as possible instead of

using the condition that f = 0, we use the condition
£f =0, (2.10.e.2)

which allows the streamlines to move radially.

The downstream boundary conditions are somewhat harder to
specify. Ideally, they are specified such that L is located so
that no further change occurs in the solution by increasing L.

We have followed the suggestion of Thomas and Szewczyk [22] of

using

fZZ =0, (2.10.1)
and either

9,, < 0, (2.10.g9.1)
or

g, = 0, (2.10.g9.2)

since use of fzz = Af and 9,, = Bg imply periodicity of the flow
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field fdr A and B not equal to zero. Boundary conditions (2.10.f)
and either of (2.10.g) do not imply the undesired periodicity of
the flow field. It should be noted that these conditions are an
approximation to the condition that derivati&es along a stream-
line are zero either for L>>1, or for streamlines parallel to
the Z axis.

Two considerations govern the form of the disturbance func-
tion which may be chosen. First, the disturbance should be
modeled on a physically realizable system. Second, the distur-
bance function should not violate the continuity equation. A
disturbance of the form

2
Ry

| | RY :
f(Rl, le t‘O) = (2 - Z'L> AmSlnArtr (2.11)

gives a disturbance to the stream function which is quite similar
to the form of a disturbance generated by an infinitesimally thin
hollow cylinder which is oscillated axially at the point (R1,2,),
where A is ;he amplitude and A is the period of the disturbance.

Application of equation (2.9.b) yields the vorticity at the point

. 1 £r c
g(RysZ, £20) = 5= (£, - =+ £ ). (2.12)

Since we assume that the disturbance is generating any devia-
tion from the fully developed flow solution, we have for initial

conditions
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f(r,z,0)

I
Q
-

(2.13.a)

and

g(r,z,0) = 0, (2.13.D)
for

0<r<l, Os<zsL-.

Now we turn to the derivation of the boundary condition for
g on the line r = 1. Equations (2.10) are repeated along with

equation (2.9.b) to facilitate the derivation,

f
z _
u=--=2=0, (2.10.a)
fr
w=_—= 0, (2.10.Db)
and
f + £ - lf = - Y (2.9.b)
zZ rr rr g- t7

Since r = 1 is a solid boundary and fz = 0 at every point on
r = 1, we also have fzz = 0. Therefore, we substitute this condi-
tion and equation (2.10.b) into equation (2.9.b) to obtain

£

rr

g=--"" (2.14)

on the line r = 1.
We now turn to the problem of the consistency of the boundary

and initial conditions. From equations (2.10.e) we have
fZ(O.O.t) = 0, (2.15.a)

fz(l,O,t) = 0, (2.15.D)



g(O'O't) 0'

and

It
o
*

g(1,0,t)

Since from equation (2.10.a) we have

fz(llolt) = Ol
therefore, from equations (2.15.b) and (2.15.e) we have
fz(]-'O't) = OI

but far upstream of z = 0, fully developed flow must exist;

therefore, we have

£(1,0,t) = 0.
From equation (2.10.d) we have
g(O:Zot) = 0,

and from equations (2.10.d) and (2.15.a) we have

fZ(O,Z,t) = 0.

Since any increase in the value of the stream function at r
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(2.15.¢)

(2.15.4)

(2.15.¢e)

(2.15.£)

(2.16)

(2.17)

(2.18)

=0

simply implies an increase in the centerline velocity, we must

also have
£(0,z,t) = 0;

therefore, this is the condition which we apply.

(2.19)



CHAPTER III. ESTABLISHMENT OF FINITE-DIFFERENCE EQUATIONS

Grid System

The governing differential equations are nonlinear and
coupled, both in the equations and through the boundary condi-
tions. Since there is no known closed-form solution to systems
of equations of this type, the method of solution which we used
was the method of finite differences. In order to apply this
technique, it is necessary, first, to introduce a net of grid

points on the flow field of Figure 1 as shown in Figure 2.

r
\
1 N
\r
i+l Ar |
r. »
1 ‘Ar N
ric1 \
Az | Az
0 ¢~ — 2
0 Zyp By %5y L

Figure 2. Grid System

Two auxiliary conditions have been imposed on the net of
grid points; these are that one of the grid points is the point
of the disturbance (R;,%;) and that some grid line falls on each

boundary of the flow field. 1Initially, we did not demand that
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the spacing between the grid lines be equal but experimentation
indicated that equal spacing yielded a more accurate solution..

The experimentation with the grid spacing showed that mesh
spacings of 0.10 and 0.10 in the radial and-axial directions, res-
pectively, were a reasonable compromise between accuracy of the
computation and machine storage.

Since the variable mesh spacing approach has been rejected,
the analysis which follows is for an egually spaced grid in the
radial and axial directions respectively. Therefore, the coordi-

nates of a grid point are given by

(iJl)Ar where lsi<Imax, (3.1.a)

B
It

and

A

5 (i-1) Az where l<jsJmax- (3.1.Db)

It would be more general to allow the time step to be variable,

so we have

n
tn,= Z; AtL where Ato = 0, (3.1.c)
1=0
and
Atap-1 = Btaye
for any 4.

Using definitions (3.1) of the grid system, we have

&(r,z,t) = &, . = &(r,

. 3.1.d
i,3 1,25, ( )

for the value of any function at a grid point.



Finite-Difference Expressions

Having established the mesh system on which the finite-
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difference equations will be solved, we now turn our attention

to the derivation of the equations. We define for use in this

derivation,

_ n _ 1 r .n n 3
&, = (Qi,j>z° EZE[ ®i,5-1F §i,j+1] + o(Az7),

(3.2.2)

n 1 n n n
= Q. .) = [. . - . . . } 2 ?
2, ( i,j/zz = AZ® él,j—l + 2§l;j + Qi,j+l o(4z%)

- (a0 _ir .n n 3
8, = (80 ). = Thl- fiig * Pran,g]t o).

15" Y T

n
8y ™ (éi,j>rr = Lhi-1,5 Y 72,5t YieaLs

. f.n 1 n+1l n
& = (§i,j>t = Bt b5 " §i,j] + o(at),

(3.2.b)

(3.2.¢)

] + o(Ar?),

(3.2.4)

(3.2.¢)

n
where § is the function of interest at the nth iterative level.

The differential equation governing the stream function,

equation (2.9.b) can be written in the following forms,

1
gkf - fZZ = pkf + frr - rfr + rg,
and

f - f +£f=

Py rr rr pkf + fzz t rg.

(3.3.3a)

(3.3.Db)

by adding the quantity pkf to both sides and factoring the/ equa-

tions appropriately. We now difference.equations (3.3) to obtain
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n+l1l,k+1 n+1\k+1
pf -(f_ > =
k.. i,j/zz

i,J

n+l,k n+I\k 1 n+1y\k n+l :

£ ()5 - (6 gt .4,
Pk i,J + i,j/rx r, fl,] r T F gl,j ’ (3.4.2)

and

n+l,k+2 n+1\k+2 1 n+1\k+2
o £ - (f. : T (f. .
k i,j i,j/rx ri i,j/r

fn+l,k+l + (fn+l>k+1 +r n+1 (3.4.b)

k i,3 i,5/zz i 9,57
where the superscripts n and k indicate, respectively, the time
step and the iteration level from which the value of the function

f is taken.

Equations (3.4) can be written in the form

o grtlokrdl gy gntlikl g girledel o LRl 5 (3l5.9)
k 1,9 ii-1,3 i i, ivi+l, 3 i,

and
o gotlekd2 o, gnilike2 o enil k2o il ke2 o, 0 (3 5
ki, 5 j7i, -1 jTi,3 joi,3+1 i3

where the coefficients A, B, and C are functions only of the grid
system and the difference operators. The terms D are functions
only of the grid system, the vorticity, g, and the known stream
function, £, at the last iteration. Either of equations (3.5)

can be written in the general form

(p I + H)f = D, (3.6)
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where H‘is a tridiagonal matrix. Furthermore, due to the form of
the coefficients A, B, and C, the matrix H is positive definite.
The guantities pk in equations (3.3), (3.4), (3.5) and.(3.6)
are parameters which are added to the equations to increase the
speed with which convergence to the solution is obtained. The
"best" values of the pk for use in equations (3.5) are given by
Varga [23] and Young [24] for a square equally spaced grid for

Laplace's equation to be
k+1

= b(5>m+l Xk =1,2,-——,m (3.7)

P b

where a and b are respectively the maximum and minimum eigenvalues
of the operator matrix H. Unfortunately, no analytical values of

P, can be obtained for the grid and difference equation which we

have but Briley's [4] and our experiments indicate that the wvalues

of a and b above and a value of m = 5 yield the greatest conver-

. n st . .
gence rate if the values of £, . are used as initial approximations
r

n+1
i,

-

to the values of £
We now begin to derive the vorticity-transport finite-differ-

ence equation. By an appropriate factoring, equation (2.9.a) can

be written in the following fbrms:

e ~ fz(%)r - %ﬁ(%‘rg)r>r = _<§£-+ l—r3>gz +'%_ Ipz’ (3.8.a)
e
and ©
£
gt +(—£-+ 1—r2>g _.%—.gzz = fz(%)r + é_(%(rg)r)r' (3.8.D)
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We now introduce the finite-difference operators (3.2) into

" equations (3.8) to obtain

[Al + l(fn+l + 1 ] gn+l
) . .- 3 o e
t r3\ i,j/z riRe i,]

n
B G LI GV R
i i,j/z ri o i,j/r e i,3/rx n 1,7
Bl ) v 3] 62,5), +
(Vi i i,j/2 Re i,Jj/2zz

1 n+2 + [%_(fn+2) + l-ra] ( n+2) _ i;( n+2 —
At 9.3 r \"i,5/r il \%,i/z R_ 9i,3/zz

n+l i
1 17 n+l) 1 n+l
— el e — - .b
[At 1 rI\ i, 3/ 2R 4 71,3 222

+ [; <fn+l> + 1 ] (gn+1> + 1 (gn+l) ,
i 1,372 riRe 1,3/x Re 1,3/rx

where, as an auxiliary condition, we demand that

(3.9.¢)

A A1’

t
2n+2
for all n. This auxiliary condition is necessary for convergence.

Equations (3.9) can be written in the form

1 gn+1 - n+l n+l + Bn+_1 gn+l n+l gn+l = po (3.10.a)
. . - » B . . ) . . . - . . » . s . . s .
At 71, i,5 Ji-1,7 i, 71,3 i,j “i+l,3] i,J
and
1 n+2 n+2 n+2 n+2 n+2 n+2 n+2 n+1l
. . A. . N . . " . . . . . v = D. . 3olO-b
ae_ 9i,3 i,j 9i,5-1 7 Bl.J i,3 Cl.] 9i,5+1 i, 3’ ( )
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where the coefficients A, B, and C are functions of the unknown

stream function, f§+§, as well as the grid system. The terms D

14

. . n .
are functions of the known stream function, fi 5 and vorticity,
?

n ' .
g, .. The time step, Atn, must be much less than one, and it

i,j
must be the same between the n + 1 and the n + 2 time steps. We
have treated the time step as a parameter which may be selected
subject to the restriction equation (3.9.c¢) in order to improve
the convergence of the iterative procedure which must be used to

solve the difference equations (3.5) and (3.10).

Boundary Condition Representation

Since we have derived the difference approximations to the
differential equations, we will now derive the difference approxi-
mations to the boundary conditions. The finite-difference operator
which approximates the first derivative in terms of the coordinates

of the grid points is [1]

n

3/ (x) .—.Z L' (x)8,, (3.11.a)
=0

where x is the point at which &' is evaluated, & is the value of

k
) th . .
the function at the k grid point, and

T
L' (%) =§: n(x) , (3.11.Db)
k by ) Gemx )T ()
j#k

where m  (x) is the normal product notation and m, (%) has the

zero factor deleted from the product.
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The second derivative operator is

n

8" (x) = Z_OL]Z (%) 8, , (3.11.c)
where
n n ﬂh(x)
! (X) = ’ ’ -
Lk £ 0 ;;O (x-xk)(x-xj)(x—xm)nh (x) (3.11.4)
j#k m#j
m#k

where all the symbols are the same as those for &’(x). 1In the
operators (3.1ll.a) and (3.1ll.c) all subscripts are relative to
adjacent grid points in the x direction, therefore they are valid
for partial derivatives at any n adjacent grid points, which are
not necessarily equally spaced.

Since we have defined the operators which we will need, we
now derive the finite-difference forms of the boundary conditions.
On the line ¥ = 0 (i = 1) we have from equations (2.17) and (2.19)

n
£ . =0, 3.12.a
1,5 ( )

and

[l

n
. =0, 3.12.b
91,5 ( )

respectively for all j and n. On the line r = 1 (i = Imax) we

have from equations (2.10.b), (2.14) and (2.16) the conditions

that
n
Imax,j = o, (3.13.3)
L _¢'(x. ) =o0, (3.13.D)
r “ Imax

Imax



25

and

n _ 1 "
IImax,j = r £ (rImax)' (3.13.¢c)
Imax

where the operators are defined in equations (3.11.a) and (3.11l.c).
Equation (3.13.a) is used for the stream function at i = Imax.

Then equation (3.13.c) is used to find the value of the vorticity.
The value of the indices for the grid points in the r direction

is Imax - 4 < i £ Imax + 1. This range of grid points was used
since it was found to yield more accurate results when equation
(3.13.b) was used to eliminate the stream function value at

Imax +-1.

From equations (2.10.e) we have for the line z = 0 (j=1)

£'(z=0) = 0, (3.14.a)
and
n
95,1~ 0. (3.14.D)
At the point (R,,Z;) we have from equations (2.11l) and (2.12)
. 2 ré
n _ R1 R >( . )
le'Zl = (—5— —ZL Am51n Artn ’ (3.15.a)
and

n 1 n 1 n n
g = - ——-{(f. )., - ( ) (£ ) ]- 3.15.
Ry,2y r i,j/rxr r fi,j r * i,j/z=z (3.15.D)

R, . R,
On the downstream boundary z = L (j = Jmax) we have from

(2.10.f) and (2.10.g) using equations (3.1l.a) and (3.1l.c) that
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£ (z) = 0, (3.16.a)
- and either

g’ (z) =0, (3.16.b.1)
or

g’ (z) =o0. (3.16.b.2)

In equations (3.16) the j has the range Jmax - 4 < j < Jmax. This
range of j values is used to avoid using function values at points
located outside the flow field.

The initial conditions are given from equations (2.12) and

(2.13) as

o

fi,j =0, (3.17.a)
and

o)

gi,j = 0. (3.17.b)

This completes the definition of the finite-difference approxima-
tions to the boundary and initial conditions.

Solution of Finite-Difference Equations

The difference equations (3.5) and (3.10) are written to be
solved using an adaptation of the Implicit-Alternating-Direction-
Method (I-A-D) subject to the conditions (3.12) through (3.16).

The I-A-D Method which we use in solving this problem is an adapta-
"tion of the methods developed by Young [23] and Varga [24].
Since our difference equations are not approximations to the

Laplacian differential equation, and our grid is not equally
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spaced on a square region, we do not know a priori that the I-A-D
Method is either convergent or stable as applied to this problem.
Since the I-A-D Method has proven numerically to be both stable
and convergent on either similar equations or similar grids
[4,6,21], we proceed cavalierly on the assumption that we will be
equally fortunate.

O0f all the publications in this area, the most closely allied
work is that by Dixon [6] who treated both the stability of
Poiseuille flow and plane Poiseuille flow. His results in the
case of plane Poiseuille flow show the experimentally observed
instability; but in the case of Poiseuille flow he has shown only
that a disturbance imposed on the field uniformly on a radius is
amplified at a Reynolds' number of 100,000. At a Reynolds' number
of 10,000 the results of his calculation show that the disturbance
may either be amplifying or decaying. At a Reynolds® number of
1000 his solution shows the experimentally observed decay of the
disturbance. His calculation procedure was to use the Implicit-
Alternating-Direction-Method fér solution of the vorticity trans-
port equation and Successive-QOver-Relaxation for solution of the
stream function equation. He obtained stream function values
only at every odd time step. He also used the downstream bound-
"ary conditions which introduce periodicity into the flow field.
Still, on the whole, his results seem to be valid. Our calcula-

tion procedure, disturbance, and downstream boundary conditions
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differ cbnsiderably from those used by Dixon.
Before explicitly explaining the calculation procedure, we
set forward the convergence tests that are applied. For the

stream function we used

‘ fn,&,k+2m _ fn,&,k ‘ < ¢

n,4,k+2m-1 l
i, i,J !

max | £,°.

gmax 1,3 (3.18)
i,J

where m is the number of p values used in the iterative procedure

and k is the stream-function iterative counter. We chose ef such

that e, 2 1.0 x 10™°.

The tests used for convergence of the vorticity are

| g?'%+l - gt | < e max | gt | 1 # Imax, (3.19.a)
] 1,] ii j i,
and
n,4+1 n, 4 n,4
- < ’
| Imax, ] Inax, Jj l ¢, max | gImax,j P (3.19.D)

9 3

where 4 is the vorticity iteration counter. Equation (3.J9.a) was
used where i < Imax and equation (3.19.b) was used when i = Imax.

We demanded that e = 2€g , and that eg z ef at all iterations.
b i i

The vorticity and stream function calculations are stopped
when

™ > 20, (3.20)
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where T is the real time, or when a solution pattern was estab-
lished.

To explain the actual I-A-D Method which was employed we
will trace the calculation procedure from tﬁe n time step to the
n + 2 time step. The iteration counters used are {4 for the vor-
ticity and k for the stream function.

Step 1: Calculate D:,j using the right hand side of equation

(3.9.a) and the values of f? and g? ..
?

J

’

Step 2: Calculate g?+§ using equation (3.10.a) and the
~ &

values of f?+%'L—l and DP L.

’ 1,

Step 3: Calculate f2+%'&'k+l

’

using equation (3.5.a) and the

n+l, 4
, a

values 9; nd f?+%'L'k.

v ] L,

n+l,4,k+2

Step 4: Calculate fi 3 using equation (3.5.b) and the
. ’

?+%'L and f?+%'b'k+l.
1,7 1,3

values g
Step 5: If k is divisible by 2m, then apply the test in equa-

tion (318). If the test is passed, proceed to step 6.

Otherwise, update k by 2 and repeat steps 3, 4 and 5.
Step 6: If 1 is greater than 1, apply the tests in equations

(319). If the tests are passed, proceed to step 7.

Otherwise, update £ by 1 and repeat steps 2 through 6.
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Step.7: Output the results of the calculations. If the test
in equation (3.20) is passed or a solution pattern has
been established, halt thé’calculation. Otherwise,
update n by 1 and proceed to step 8 or step 1, depend-
ing respectively on whether step 2 or step 9 was in

use for the time step being processed.

Step 8: Calculate D?+% using the right hand side of equation

'

(3.9.b) and the values of f?+% and g?+%.
i,] i,]
ni2, . .
Step 9: Calculate g using equation (3.10.b) and the
values of gt2.4-1 and D?+§.

Step 10: Replace step 2 with step 9 and proceed to step 3.

In steps 2 and 9 it will be noted that for 4 = 1 on any time
n+l,4-1

level no true values of fi ) exist, therefore the wvalues of
£ : were used. These values of £ . were also used for f?+%'L'k
’ 4 14

when k = 1. The only other special cases occur for n = 1 in which

case the initial conditions are used for gz and fz 5 In the

above calculation procedure the boundary conditions (3;12) through
(3.16) are applied in steps 2, 3, 4 and 9 with the values of the
indices indicated in the step.

We have now defined the finite-difference equations and

explained the calculating and testing procedures, so we move on

to the display of the results.



CHAPTER IV, RESULTS

A computer program was written and run on the Scientific
Data Systems Sigma 7 Computer at the University of Houston. This
program performed the I-~A-D calculations necessary to solve the
difference equations (3.5) and (3.9) under the solution sequence
steps 1-10 listed in Chapter III. The solution‘was carried out
with a basic time step of 0.02.

Preliminary runs indicated that both nonuniform grids in the
r and z directions and grids with Ar # Az yielded a numerical in-
stability. (See Appendix B for a complete discussion of the
numerical errors associated with the nonuniform grid system.)
Therefore, the results presented here were calculated with
Ar = Az = 0.10. It was also found that, for the same error cri-
teria, using double-precision arithmetic improved the convergence
and cut the total computation time for each time step. The program
was set up to4solve the difference equations on a flow field of
dimensions 1 by 11 to 25 radii in the radial and axial directions
respectively.

The program selected the length of the flow field above 11
radii by testing all values one radius upstream of the downstream
boundary. If one value was greater than 10~’, the flow field was
increased in length by one radius. The maximum length of the flow
field found fo be necessary was 14 radii. Since the computer-

plotting routines are fbr even increments, the plotted flow field
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is 12 radii in length. This is sufficient to show all significant
changes in the variables.

AS further preliminary checks, the boundary and initial con-
ditions were changed to those of Poiseuille pipe flow and this
solution was calculated for 10 time steps. The resulting solution
was maintained at its correct value for a Reynolds number of 1000.
Short runs were also made for the main flow case with an analogous
disturbance to the one for the perturbation flow. These results
are qualitatively similar to the results obtained for the perturba-
tion flow so we use the perturbation flow solution since it is
numerically more accurate.

The Reynolds numbers for which the solution was calculated
are the following: At an amplitude Am equal to 1.0, the Reynolds
numbers were 1000, 3000, 10,000 and 100,000, while at an amplitude
of O.l, the only Reynolds number was 100,000. The values were
selected because the solution at a Reynolds number of 1000 should
be unconditionally stable. The solution at a Reynolds number of
100,000 should be unstable at an amplitude of 1.0 and possibly
stable at an amplitude of 0.1l. All runs were ma@e witﬁ Ar equal
to 1 which is within the experimentally unstable range indicated
by Kuethe (1956) and Leite (1959). So, these runs provide a com-
parison upon which to decide whether the solutions at Reynolds
numbers of 3000 and 10,000 were stable or unstable. Unfortunately,

since the time step is variable and solutions were saved for plotting
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at every fifth time step, the times at which solutions are avail-
able are not always directly comparable. Nevertheless, the solu-
tions presented were selected as close together in time as possible.
All results presented represent from 5 to 6% hours of computing
time each.

Summary plots, Figures 3 and 4, are presented (for all Reynolds
numbers) which show how the maximum values of both the disturbance
stream function (F) and disturbance vorticity (G) behave as the
flow moves downstream with time. Only the first disturbance is
shown in each plot since subsequent disturbances have similar trends
in the maximum values. Other plots presehtedvare for disturbance
vorticity and disturbance stream function versus axial position (Z)
for a given radius, time and Reynolds number. The plots which we
present are for nondimensional radii of 0.4, 0.6, and 0.8 as these
were felt to be generally representative of the solutions obtained
since 0.6 is the radius of the disturbance and 0.4 and 0.8 are
equally spaced on either side of the disturbance. Plots are shown
at representative times for each Reynolds number; however, results
are not shown for all radial values at every time for which plots
are given. As a preliminary screening device, a printer contour
plot was made of all results which were retained for ultimate pre-
sentation. These contour plots indicate that the radii selected
do not always contain the maximum value of the vorticity or stream

function solution at the time step. The plots in Figures 5-20 are
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all scaled on the maximum value for each Reynolds number for
‘the time step being plotted.

Preliminary runs(indicated that our downstream boundary con-
ditions had little or no effect on the solution but that the con-
dition 9, = 0 (B.C.l) seemed slightly preferable. Therefore, all
results presented are for this condition.

Figure 3, the summary stream function plots for all Reynolds
numbers, shows how the maximum value of the disturbance stream
function behaves as the disturbance is carried downstream. For a
Reynolds number of 1000 and an amplitude (Am) of 1.0, Figure 3a,
the maximum value of the disturbance stream function takes on a
maximum value of 0.22 and then is observed to decrease as the
disturbance moves downstream. This result is consistent with what
is expected since flows at a Reynolds number of 1000 are inherently
stable and all disturbances must decay with time. At a Reynolds
number of 3000 and an amplitude of 1.0, Figure 3b, the maximum
value of the disturbance stream function increases to 0.23, de-
creases to 0.17 and then levels off at 0.175. The calculation at
this Reynolds number did not decay with distance as thé disturbance
moved downstream, but neither did it amplify. Therefore, we con-
sider this case to be neutrally stable.

For an amplitude of 1.0 and a Réynolds number of 10,000,
Figure 3c, the maximum value of the stream function disturbance

increased to a value of 0.23, decreased to 0.17 and then began to
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climb slowly, reaching a value of 0.18 at an axial length of 5.8. .
The calculations for the next time step, at a time of 4.18, did
not converge for this run at a Reynolds number of 10,000. Various
methods (including decreasing the time step) were attempted in
order to obtain convergence but these attempts met with no success.
The nonconvergence of the solution was attributed to instability
of the flow. Therefore, at a Reynolds number of 10,000 and an
amplitude of 1.0, the flow is considered unstable because of the
increase with axial distance of the maximum value of the disturbance
stream function and sdbsequent failure of the solution to converge.
Two amplitudes were considered at a Reynolds number of 100,000.
Figure 3d depicts the behavior of the maximum value of the distur-
bance stream function for an amplitude of 0.1 which could be taken
to be a small-amplitude disturbance. The disturbance stream function
maxima increased to about 0.024 just downstream of the point of
application of the disturbance and then continually decreased as
far as the calculation was carried. Since the disturbance stream
function is decaying for this example, we consider this flow to be
stable. This result is consistent with other small-amélitude
investigations in that Poiseuille pipe flow seems to be stable
to small-amplitude disturbances at all Reynolds numbers, i.e.,
Davey and Drazin (1969). The calculation for the amplitude of 1.0

at this Reynolds number, Figure le, produced a result almost
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identical with the calculation at a Reynolds number of 10,000
with the same disturbance amplitude. Thus, we consider the small-
amplitude disturbance flow to be stable and the large-amplitude
disturbance (Am = 1.0) flow to be unstable.

The disturbance vorticity plots shown in Figure 4, for the
same calculations as depicted in Figure 3, have the same qualita-
tive behavior as the disturbance stream-function plots. Therefore,
the same conclusions can be drawn solely from the disturbance
vorticity plots.

Comparison of the plots of the stream function and vorticity
at an approximate time of 0.5 and a radius of 0.6, Figures 5 and
6, show that the maximum values appear on the radius of the distur-
bance for all Reynolds numbers considered. The jagged behavior
of both the stream function and vorticity upstream of the distur-
bance seems due to damping of a disturbance wave moving upstream
and counter to the main flow.

At a time of approximately 1.5 and a radial value of 0,6,
Figures 7 and 8, the maximum vorticity is at the point of the
disturbance as it was at earlier calculation times. Tﬁe maximum
value of the stream function for disturbance amplitude 1.0 at all
Reynolds numbers is seen to lie on the disturbance radius and
at the downstream peak of the disturbance. For the disturbance

amplitude 0.1, the maximum value is at the upstream peak. It
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is also observed that the first peak of the disturbance has moved
approximately one radius downstream.

At a time of approximately 2.5, Figures 7-12, plots are given
for all three nondimensional radial values, 0.4, 0.6 and 0.8, at
each Reynolds number., Figure 9 shows the disturbance stream
function at a radius of 0.4 while Figure 1l shows the disturbance
stream function at a radial value of 0.8. Both .figures illustrate
the progression of the disturbance wave downstream at equal dis-
tances on either side of the disturbance radius. Figure 10 shows
the disturbance stream function for the radial value of 0.6 (the
Qisturbance radius). This figure indicates that the disturbance
isydamped at the Reynolds number of 1000 and also for the Reynolds
number of 100,000 at a disturbance amplitude of 0.1. Also indi-
cated in Figure 10 is the failure of the disturbance stream function
to decrease in value for Reynolds numbers of 3000, 10,000 and 100,000
as the disturbance progresses downstreamn.

The disturbance vorticity plots at a time of approximately 2.5
for each of the radial values 0.4, 0.6 and O.8_are contained in
Figures 12-14. Study of these vorticity plots shows that the
same observations can be made about disturbance stream function.

Another point to note in Figures 9-11 is that the disturbance
stream function is a maximum at a radial value of 0.8 and that the
downstream peak has moved toward the centerline of the cases con-

sidered except at a Reynolds number of 100,000 and a disturbance
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amplitude of 0.1 for which the maximum disturbance stream function
value remained at the disturbance radius of 0.6.

Figures 15 and 16 depict the behavior of the disturbance
quantities at a time of approximately 3.5 and a radial value of
0.6. The results in Figures 15 and 16 bear a similarity to those
in Figures 10 and 13 (at a time of 2.5). Again, it is noted that
the values at Reynolds numbers of 1000 and 100,000 (the latter
at an amplitude of 0.l1l) are decreasing with downstream distance,
while for Reynolds numbers of 10,000 and 100,000 (at Am = 1.0),
the disturbance quantities are increasing with downstream distance.
At a Reynolds number of 3000, no change in disturbance stream
function or disturbance vorticity is noted with increasing down-
stream distance.

Another point of interest in Figures 15 and 16 is the marked
decrease in the first negative peak of the stream function for
the higher amplitude (Am = 1.0) cases. For the low-amplitude
(Am = 0.1) case, the first negative peak is greater than the first
positive peak. Note should also be taken of the strong pattern
resemblance of the stream—function plots at Reynolds numbers of
3000, 10,000 and 100,000 (Am = 1.0). These patterns are dis-
similar from those at Reynolds numbers of 1000 and 100,000
(Am = 0.1). A similar pattern resemblance is seen in the vorticity

plots.
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At a time of 4.0 and at a radial value of 0.6, Figures 17
and 18, results are given for all examples except one. The example
for which no results are given in this case is at a Reynolds number
of 100,000 and an amplitude of 1.0. As mentioned earlier, the
solution for this example failed to converge. Several corrective
procedures were attempted, i.e., smaller time steps and finer,
more time-consuming finite differencing, to obtain convergence at
this calculation time, but to no avail. We attribute the failure
to converge for this one case to instability of the flow.

In Figure 17, the disturbance stream function is shown to be
decreasing with downstream distance at Reynolds numbers of 1000
and lQ0,000, the latter of which is for an amplitude of 0.1. For
Reynolds numbers of 3000 and 10,000, the disturbance stream function
is increasing with downstream distance. Figure 18, the disturbance
vorticity, follows the trend as discussed for the disturbance
stream function at this time and radial distance.

The pattern resemblance first noted in Figures 15 and 16
has intensified in Figures 17 and 18.

The far downstream regions of the stream function for Reynolds
numbers of 3000 and 10,000 are now quite similar and are markedly
dissimilar from the same region at 1000. In the immediate down-
stream vicinity of the disturbance, plots for Reynolds numbers
of 1000 and 3000 are similar but different from that at 10,000.

The plots for a Reynolds number of 100,000 (A.m = 0.1l) is not
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similar to any of the other plots. Similar pattern comparison
can be made for the vorticity plots.

Figures 19 and 20, the last figures presented in the calcula-
tion procedure, depict the solution at a time of approximately
4.5 and a radius of 0.6. For these conditions the solution at a
Reynolds number of 10,000 and an amplitude of 1.0 failed to con-~
verge despite several (previously mentioned) corrective attempts.
Again, we attribute this convergence failure to instability of the
flow.

Figure 19 shows the disturbance stream function value to
continue to decrease with downstream distance‘as time progresses
for a Reynolds number of 1000 and 100,000, the latter for an
amplitude of 0.1. The solution for the progressing disturbance
stream function at a Reynolds number of 3000 remains at approximatly
the same magnitude between Figures 17 and 19. Once again, as shown
in Figure 20, the disturbance vorticity reflects the observations
made for the disturbance stream function.

The patterns of the s£ream»fuhctions at Reynolds numbers of
1000 and 3000, Figure 19, are now seen to differ over ﬁost of/the
region downstream of the disturbance. The plot at a Reynolds
number of 100,000 (Am = 0.1) is again dissimilar from the other
plots. Figure 20, for the vorticity, shows the same type of

results.



CHAPTER V. SUMMARY AND CONCLUSIONS

The feasibility of a numerical technique to determine the
response of Poiseuille pipe flow to a given aisturbance has been
demonstrated. This problem has been treated experimentally many
times with well-substantiated results. Heretofore, however, no
one had ever been able to show the instability of Poiseuille
pipe flow to a disturbance, be it a small disturbance or a large
disturbance.

The results of.the preceding chapter demonstrate that the
numerical approach contained herein does yield a stable solution
to an axisymmetric disturbance of the form £(Ry,21,ty,) = (1.0).

RE =®rE .

(??-— 7%’)Sln“tn at a Reynolds number of 1000. The stream func-
tion disturbance is seen to decay with downstream axial distance
for this example,

At a Reynolds number of 3000 and a disturbance amplitude of
1.0, the disturbance stream function is not seen to decay with
increasing downstream distance; however, no growth of the distur-
bance stream function is noted either. This Reynolds number cal-
culation seems to be neutrally stable.

For a Reynolds number of 10,000, the same disturbance func-

tion was found not to decay but was carried downstream with

slightly increasing amplitude. This result failed to meet our



stability criterion cited in Chapter I, i.e., if the amplitude
of the disturbance stream function decays with downstream axial
distance, then the flow is deemed stable to the disturbance at
the given Reynolds number.

At a Reynolds number of 100,000 and a disturbance amplitude
of 1.0, the stream function disturbance was also amplified with
downstream axial distance. This is definitely an unstable condi-
tion according to the cited criterion.

The four examples for which results have been cited were
all for a disturbance amplitude of 1.0 which is, of course, a
finite-amplitude disturbance. The results of these calculations
have been consistent with what is expected from the physical
problem for the same conditions. To examine what would happen
for a small-amplitude disturbance, we considered a flow with
Reynolds number of 100,000 and a disturbance amplitude of 0.1.

We found for this case that the disturbance was definitely damped
as it progressed downstream,

All of the results cited are consistent with experiment for
the corresponding Reynolds numbers and amplitudes. Par£iculars
of the solutions follow:

On the basis of preliminary, short computer runs, it was
found that, to insure numerical stability and improve accuracy of
the solution, an equally spaced grid was necessary for the solu-

tion of the finite-difference equations.
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For. the disturbance used, a flow field of 14 radii appears
to be of sufficient length to represent an "infinite" length
for the times covered by these calculations. Double-precision
arithmetic was found to improve the stability of the solution and
speeds the convergence as well as reducing total computing time.

For all Reynolds numbers and times the finite-amplitude
disturbance st:eam function showed more damping toward the wall
and more growth toward the centerline with axial distance down-
stream of the disturbance. At high calculation times at an am-
plitude of 1.0, we observe strong pattern resemblance between
the solutions at Reynolds numbers of 3000, 10,000 and 100,000
(amplitude 1.0) but dissimilar patterns at Reynolds numbers of
1000 and 100,000 (amplitude 0.l1). The amplitudes of the distur-
bance stream functions and vorticities at Reynoids numbers of
3000, 10,000 and 100,000 (amplitude 1.0) are again similar but
they are different from those at values of 1000 and 100,000
(amplitude 0.1). We found{ contrary to the results of Dixon and
others, that the stream functions and vorticities at Reynolds
numbers of 10,000 and 100,000 show definite amplification with
distance downstream of the disturbance while they show definite
damping at values of 1000 and 100,000 (amplitude 0.1). The cal-
culation at a Reynolds number of 3000 showed no decay or ampli-

fication with downstream distance.
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In conclusion, we say that Poiseuille pipe flow is unstable

to an axisymmetric disturbance of the form £(Ry,2,,t,) = (1.0).

(Bi_ R
2 z

stable at a Reynolds number of 1000 and is neutrally stable at

)sinnt_ at Reynolds numbers of 10,000 and 100,000 is

3000. When the disturbance amplitude is changed from 1.0 to 0.1l

at a Reynolds number of 100,000, we found that the flow was stable.



100

References

Abramowitz, M., and Stegun, I. A., (ed.), Handbook of Mathe-
matical Functions, National Bureau of Standards, Applied
Mathematics Series 55, Washington, 1965.

Betchov, R., and Criminale, W. O. Jr., Stability of Parallel
Flows, Vol. 10 of Applied Mathematics and Mechanics,
Edited by F. N. Frenkiel and G. Temple, Academic Press,
New York, 1967.

Bhat, W. V., "An Experimental Investigation of the Stability
of Hagen-Poiseuille Flow Subjected to the First Mode of
Azimuthally Periodic Small Disturbance," Ph.D. Disserta-
tion, University of Rochester, Rochester, N. Y., 1966.

Briley, W. R., "Time-Dependent Flow in a Cylindrical Container,”
Ph.D. Dissertation, University of Texas at Austin, Austin,
Texas, 1968.

Corcos, G. M. and Sellars, J. R., "On the Stability of Fully
Developed Flow in a Pipe," Journal of Fluid Mechanics,
Vol. 5, 1959, pp. 97-112. '

Dixon, T. N., "A Study on Stability and Incipient Turbulence

~ in Poiseuille and Plane Poiseuille Flow by Numerical Finite
Difference Simulation," Ph.D. Dissertation, Rice University,
Houston, Texas, 1966.

Irving, J. and Mullineux, N., Mathematics in Physics and
Engineering, Academic Press, New York, 1959.

Kuethe, A. M., "Some Features of Boundary Layers and Transi-
tion to Turbulent Flow," Journal of the Aeronautical
Sciences, Vol. 23, 1956, pp. 444-451.

Leite, R. J., "An Experimental Investigation of the Stability
of Poiseuille Flow," Journal of Fluid Mechanics, Vol. 5,
1959, pp. 81-96.

Lessen, M., Sadler, S. G., Liu, Ting-Yung, "Stability of Pipe
Poiseuille Flow," The Physics of Fluids, Vol. 11, 1968,
pp. 1404-1409.




11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

46

Meksyn, D., "Stability of Laminar Flow Between Parallel Planes
for Two- and Three-Dimensional Finite Disturbances," Zeit-
schrift Fiir Physik, Vol. 178, 1964, pp. 159-172.

Meksyn, D., and Stuart, J. T., "Stability of Viscous Motion
Between Parallel Planes for Finite Disturbances," Proceed-
ings of the Royal Society, Series A, Vol. 208, 1951,
pp. 517-26.

Pekeris, C. L., "Stability of the Laminar Flow Through a
Straight Pipe of Circular Cross-Section to Infinitesimal
Disturbances Which Are Symmetrical about. the Axis of the
Pipe," Proceedings of the National Academy of Science,
Washington, Vol. 34, 1948, pp. 285-295,

Reynolds, 0., "An Experimental Investigation of the Circum-
stances Which Determine Whether the Motion of Water shall
Be Direct or Sinuous, and of the Law of Resistance in Par-~
allel Channels," Philosophical Transactions of the Royal
Society, Vol. 174, 1883, pp. 935-982.

Sarpkaya, T., "Investigation of the Stability of Pulsating
Viscous Flow," Journal of Basic Engineering, Vol. 87D,
1966, pp. 589.

Schensted, I. V., "Contributions to the Theory of Hydrodynamic
Stability," Ph.D. Dissertation, University of Michigan, Ann
Arbor, Michigan, 1961.

Sexl, T., "Zur Stabilitaetsfrage der Poiseuilleschen Stroemung,"
Annalen der Physik, Vol. 83, 1927, pp. 835-848.

Squire, H. B., "On the Stability of the Three-Dimensional
Distrubances of Viscous Flow Between Parallel wWalls,"
Proceedings of the Royal Society, Series A, Vol. 142, 1933,
pp. 612-628.

Stuart, J. T., "On the Non-Linear Mechanics of Hydrodynamic
Stability," Journal of Fluid Mechanics, Vol. 4, 1958,
pp. 1-21.

Taylor, G. I., "Some Recent Developments in the Study of Tur-
bulence,” Proceedings of the Fifth International Congress of
Applied Mechanics, 1938, pp. 294-310.




21.

22,

23.

24,

47

Thoman, D. C., and Szewczyk, A. A., "Numerical Solutions of
Time~Dependent Two-Dimensional Flow of a Viscous Incom-
pressible Fluid over Stationary and Rotating Cylinders,"
Heat Transfer and Fluid Mechanics Laboratory, Department
of Mechanical Engineering, University of Notre Dame, Notre
Dame, Indiana, Technical Report 66-14, 1966,

Thomas, L. H., "The Stability of Plane Poiseuille Flow,"
Physical Review, Vol. 91, 1953, pp. 780-783.

Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1963.

Young, D. M., Jr., "The Numerical Solution of Elliptic and
Parabolic Partial Differential Equations," Survey of Numeri-
cal Analysis, Edited by John Todd, McGraw-Hill Book Company,
Inc., New York, 1962, pp. 380-435.




APPENDIX A



49

o= Ay ‘0°T = Uy smOH = ¥y .WUQMHWHQ .
weaI3sumMod °*sA UOT3OUNg WeoIlS 9dueqinlstd FO SnTeA WUNWIXEW *ef 2anbtd

Z
0°s8 0°L 0°9 0°6 0¥ 0°¢ 0°2

_ _ | | ]
- 966°S
_ 96¥%°S
| 966" ¥
, Y8y ¥
- 910" ¥
9TS"€
. z00°€
Tes ¢
- 900°2C
€87° T
L £20°T
£95°0

ocdaoopdoodaerd

'
+
T



50

wW=4Jd¢ ‘0°T =Wy ‘0T X ¢ =Y ‘edue3lstd .
uesI3sumod *sa uoT3IdUNg WeSI3S SDURAINISTA JO ISNTeA WNWTXeW °*d¢ aanbTd

"4
0°8 0L 0°9 0°s 0¥ 0°¢ o'z
£*0-
_ | | _ -

— 0v0s° v @ =
0v86°€ W
— o8V c @
0v86°2 O
— ovev T A
0¥86°T O
— 02es 1O
0Z¥0°T ¥
— 088%°0 O




51

0°8

0°L

C.E. - hﬂ< nOoH -

0°9

4

0°s

uy 4 01 =y ‘soue3std
wesIjsumod °sA uoT3idUNJ WesIl§ SOURAINISTA JO ONTeA WIWIXeW °*Of aanbtd

0°v

0°¢

0°¢.

886°C W
9%67v°c @
200°€ O
900°€ A
8€0°Z O
0os* T O
000°T ¥V
00S°0 O

_

€°0-

. 2°0~

1°0-

c°0



52

0°8 0°L

*ll = .H4 s._”oo —= Em smo..—” = .m smogw“mﬂn

ueaI3lsumod *SA UOT3IDUNG uesJlS 90URAINISTA FO SNTRA WNWIXEW °Pg mhsmﬁm

4

0°9 0°g 0% 0°€ 0°2

080S * ¥
— O¥S0° ¥
0Z€S°€
| 0¥20°€
_ 066%°2
— 086 ° T
099%° 1
— 090T°T
0SE€S°0

odqoopdoognm

€0°0-

¢0°0-

10°0-

10°0

¢0°0

€0°0



53

Uo=JI¢ ‘0°T =Wy ‘ 0T =¥ ‘Souelsiqg :
wesI3swmod °sA uOT3OUNng weaxlS 20urgInlsTd JO SNTRA WNWIXEW °*of 9Inbtd

z
0°8 o°L 0°9 0°§ 0°v 0°¢ 0°¢
£°0-
I _ ~ _ _
oLVt @
— 966°2 O — ¢°0~
9162 O
- 9€0°2 O —
oos-1 O
— 000°T — 1°0~
00s°0 O
- — 0
- — TI°0
_ | | _ |

€°0



54

weaI3sumod °sA AJTOT3IOA ©DURQINISTA JO SNTEA WNUTXKEW

4

0°8 0°L 0°9 0°g 0¥ 0°¢ 0°¢

"*ep oaInbrtd

| | _ !
S 966°S @
267 °S A
- . 966°7 @
_ 78y v 8
e 910°% V¥
915°ct ©
— 200t O
1252 A
- 900°z O
egy T A
— €zo°T V
€96°0 O

_

0°02
0°0¢
0° 0%
0°0s

0°09



55

wo=7¢ ‘0°T =W ‘0T X ¢ = ¥ ‘soue3siq
ueaI3sumod °sA AQTOTIIOA SOURAINISTJ JO SNTRA WNWTIXeW °qf 2InbTd

4

0°8 . 0°L 0°9 0°S 0¥ 0°¢ 0°¢
0°09-
_ _ | I _

— y0S°v B -— 070Ss-
¥86°€ W

- ¥87°€c © Do op-
v86°2 O

| ¥87°C A 0°0c-
¥86°T O

L Zzs T O 0°0z-
Zv0°1 V

- 88%°0 O 0°0T-

- el 0°0

- —{ 0°0T

- B v @ — 0°0¢

L 0°0¢

| — 0 0¥

- — 0°0S

_ | | [ - | , 0°09



56

0°s

.o._.._. - .Hm. sO.H = EAN uﬁo.ﬂ =¥ wmugmpmﬂa
wReaI}sumo SsA &WUHU._HM..HONV aourdqanilsTd JO anTeA WNWTXeW *Oof m.HS..mH.m.

z

0°L 0°9 0°S 0¥ 0°¢ 0°2

_ _ | _ ~

886°¢€
96%°€
900°¢
81S°C
8€0°C
00S°T
000°T
- 008°0

-0d00pCod

0°0g-
0°*0z-
0°01~
0°0
0°0T
0°02
0°0¢
0° 0%
0°0s

0°09



57

o= Ty ‘170 = Wy ‘0T =¥ ‘°0ue3lsIq | :
wesI3sumod °*sA AJTOTIIOA 9dueqINlSTd JO SnNTeA WNWIXeW °Py 2Inbtd

A
0°L 0°9 0°s 0¥ 0°¢ 0°¢
0°09-

_ | | _ _

gos*vy H© —1 -0°0S-

¥50°7 W

zes'e © 0°Op-

vz0'e O

667°2 O — 0°0¢-

¥86°T O

99%°T O — 0°02Z-

90T°T WV

geso0 O — 0°0T-
— 0°0
— 0°0T
— 0°0¢
— 0°0¢
— 0°0%
- 0°0S

_ _ L | R S



58

0L

°ll =

0°9

¥ ‘0T

= Uy .mOH = ¥ ‘odbueastd
wesIlsumod °*SA AJTOTIION ooueRqIN3ISTA FO OnTeA WNWIXeW °9F a2anbtd

z

0°g

(O 4 0°¢ 0°¢

9L¥°€ ©
966°2 O
9IS Z A
9c0°z O
oos T 0O
000°T
00S°00

|

_ _

0°09-
0°05-
0°0v-
0° o€~
0°0z-
0°01-
0°0

0°01

0°0¢



59

UoT3doung weeIls o9oueqINISTAd ‘eg oanbrd

1"2'g'0 0001 = JOINIME 007001 WY'1d 00°1 = yy'rog = @109 = smovi

€ -t loud

|

*§1 . } X .

10-68" 1~

to-66°t



60

1°0°8'0°0008 = FY'INIDUEL 00°001= Wy'ld

£ -

uoT3oUNnd weeI3lS ooueqInistd “d§ aInbTd

00°1 = ¥y‘ssy’ = awll‘09° = salavy

¥ IO

10-99° 1~




61

UOTAOUNd WesI3S @ouRqIN3STA °*Og§ 2anbTd

1°0°8°0°00001 = H'INAMHS 00°QCT= wY 1d 00°T = Y 00S" T @ILI09T = sTIaVY

€ -7 0

10-68°1~

- 10-89°1



62

UOT3OUNI WesI31S ooueqinastd P§ 9InBTA

1°0°6'0 000001= Ju‘INAONZd 00°0T = WV'Id 00°1 = Hy'SES” = SWIL'09" = sniava
£ -s wu

4

Jeo-09-3-

i : 20-99°1%



63

U 0°u'0°000008= &' INAOHIS 00°001= ' id 001 = wx'oog”

uoT31ouUNnd weexls soueqaInisTd

€ - € JowW

*2g aanbtg

= 3WiL'09° = SNIAVH

.

10-88°1~

: .
10-6



64

1707687070001 = J'iN4M3d 00°001= W'id 00°1 = ¥v'C9S°

KatoT3I04p oduRqIN}STIQ

14 -1

0d

‘e9 ©aInbtg

= WIL'C9” = smawy

° 4

° 4

10420°2~

1



65

A3ToT3I0A @oueqanisTtd U9 SINDTA

1°0°98'0°000€ = Iy Iagodad 007001z wy'fd 00°1 = Hy'say’ = AWtL'09° = Sniavy

¥ - ¥ 1o

10+81°€~

10+81°¢



66

hnﬂUﬁuao\w 9dueqinlsTg ‘09 aanbtg

1°2°890°00001 = 3y INe0wd 007 001= mhid 00"y = yv'oog: = WWIL'e9T = sjaw

¢ -2 Jowu

10+72°¢~

T0ey2°¢



67

A3TOTIIOA OOURAANISTA ..Um..mu.ﬂm..n_m.

1 4

- S

1°5°9°0°000001= U INIOUA 00°0F = Wy'Id 00°1 = Nv'cEs”

o

= aWi1k'os’ = sniavd

Jooecs ¢~

- 80+£8°¢



68

muﬂUﬂuuo> aoueqanlsTqg °

1°0°8°0°000001= HH ANADMHd 00°00T= hY'Id 00°F = WY’ 00C”

1 2

-t

o

= awWiL" 09"

29 oanbtd

= SMav

° 4

104227 ¢~

o 1022°¢



69

170°69°0°0001 = FU'LXIMAd 00°001= WY'Id 00°1 = Hv'Cerl

uoT3IoUNg uresIls soueqanlysTtqg

= aWIL*09"

*e/ oInbTg

= SNIGVY

“

° 4

&

10-98" 1~

0=t



70

1°3 g‘0"000¢

st

L4

AU INSAd 00°001= Wy'id 00°F =

- LOd

uoT3IouUnd WeaI3lS SoueqINISTd

*qL 2anbTd

ANIL08" = Shiavd

10-£8" 1~

.
AL

10-£8°1%



71

uoT3oung wesIls SouRqINISTA

1°0°8°070000% = JY'INHOMAd 00°007= Wy'id 00°7 = ¥y'00¢'1

-

= 3IL'09° = SNIgvY

*0/ 2anbtg

"4

4

10-69° 1~

10-80"%



.72

uoT3oung uesIls monmnnsumﬁa.ﬁ.g ..&.wsmﬂ_m A

1°0°g°0°000001= Ju'INZJUSd 00707 = Wy'Id 00°F = ¥v‘99»°'1 = GNIL'09" = Sniavi

n ?i,

120-10°1-

T 20-1871



73

IS

A3 TOTRI0A @doueqanistg ‘9L oInbTdg

1"3°8°0°000001= Jy‘INAM3 00°00T= Wr'ld 00°1 = Hv'00S"( = SWIL'09° = SMOw

10-06"1-

N i ~ 4 : * ; ,..l . ‘ Lo .>uruqt a 4-

10-08°%



74

AJTOTIION odueqanysTg °®8 2aInbrd
L4

172°9°0°0001 = B INI3d 00°001= Wy*Id 00°1 / = WV'Ce® 1. = IL09° = sniavy
st -1 fwu

10+91 9=

) . "10491°9



75

A3TOoT3I0A 9QURAINISTA  °gg musm..n_m

1°2°8°0°000€ = Fu‘INAOHA 00°001= Wy'ld 00°T = dy'226°1 = aWwik'09" = sniagvd

91 -~ ¥ IO

F0+01 9~

50+01°Y



76

A3TOT3I0A ®dURQINSIQ

1707870700001 = Hd'LNHIHAd 00°001= Wy“ld 00°T = Wv'00C-t

L1 -2

Rieg ]

*og sanbtd

= AWIL09° = sy

n

10+0€° -

- 10e08°V



77

-A3TOT3I0A moamoﬂﬂ.u,w..n.a. ‘P8 muamﬁm

1°9°g’0°000001= J'INAOHAd 00°01 = Wy‘Id 00°1 = WV'99¥°1

N -

ou

= gWil‘oe"

= sniava

g

°y

K

Joosor-y- -

00001y



78

1°3°4°0°000001= Fy INIDHAd 00°00T= ky‘}d 00°1

A3TOT3I0A 9DURAINISTQ

= 1L'09"

= sniavy

g 9anbtg

ls..

e

em———.-

P

<K

10+€8C" "

10+8L°0

I



79

uoT3dung weails edueqInlstg 6 2InbTg

1°0°8°0°0001 = J'LNANAJ 00 00T= Wv“1d 00°T = ¥y'12¢-2 = BWIL'0r = sMawv

14 -1 0w

— _ : - 10-60"2-

M. A ; o : . \\\/ 4 4

10-88°2



80

£°3'4'0°000¢

uoT3IOoUNg WeaIlS 9ouURINISTd “d6 9InbTI

= FULNADMA 007001z Wy id 00°1

s Hy'rEE2 = AWIL'0¥T = SaidvM

$2 - WM

10-0¢€°2-

10-0€°2



8l

UoT3IOoUNg WesaJI3lS SoURINISTA °°O6 2InbTJI

107470700001 = JH'INARIAD 007 001= WV fd 00°T = ¥v'e1¢°2 = WNIL'OYT = STIaYY

@ -2 Wwd

10-€%° 2~

10-te°2

ane .



g2

1°0°@’0°000001= SNINAOHBd 00°01 = Wy'Id 00°1 = Hv'esy'? = aWiz‘oy" = sniavi

woT30UNd WRDIIS .mocmg.ﬂzumﬂm . *p6 .A.ouamﬂ_..u,. N

st

N L

Jeo-18"1-

20-18°1




83

uoT3ouUNd WesI3lsS 9ourqINISTAd

1727807000001 M 1N4u44 00°001= W14 00°1 = Wy'9le'z = k U A Ly

<2 -t oW

‘26 2anbta

= sum

X\ X : - &XXXJM.“ o»lﬁ&ﬁmm

10-$9"2~

w0-sv'z



84

uoT3IdoUNg wWesI3S SourqIN}STQ °*eQT SaInbrd

TTYTEI070001 - T BY'INOMAL 007001 PYId 0071 = MV'126°2 = @109 = sniavd .

12 -1 WOu

10-80°2~

81 ) * ‘9 e : -3

10-60°2



85

uoT3oUNd WeaslS 9ouedInisTd *qQT °InbTd

£°0°8°0°000€ = FH'INAOHIAd 00°001= Wv‘Id 001 = Hy'¥8¥y'2 = HWIL'09° = Snldvd

L2 -y o4

10-0€° 2~

,qqunpa;axr . - 12 Adle .

~10-0£°2



86

UOT3DUN WeSI}S eoURqINISTd

10780700001 = 4N'1INAMAA 00°001= Wy'id 00°V = e RIe

2 -2 low

*D0T 2anbta

= WIL09" = sniav

10-£9°2~

.

-3



87

uoT3ouNg wres 138 SoURqINISTA Uo.m oanbTd -

1°0°8°0°000001= FINADUAL 00°01 = Wy‘ld 00°1 = Uv'66H°2 = SNIL'08" = Sniavd -

12 -8 oW

120-28°1- .

20-4871



88

uoT3OoUNJ WRDI}S ODURAINISTIA 90T °INBTJ

1°D°8°0°000001= ' INIId 00°00T= wv'1d 00°t = yy'olg 2 = BWIL°09° = SnIgvd

2 -¢ oW

10-S¥" 2~

- 10-S¥°2



89

1°0°8'0° 0001

uoT3dung wesils odueqiIn3isIq@ eIl oaInbTd

= B 1IN 00°00T= Wy'Id 00" = MW i2¢°2

(14

-1

04

= WIL08" = sniave

*

10-80°2~

- 10~80°8



90

uoTtidung Emmupm soueqInasTg “dIT 2anbTd

1'0°8°0°000f = GU‘INJOHId 00°001= Wy'Id 00°T = uy‘ve» 2 = GWIL'08° = Snigvy

€2 - v loud

10-0¢° 2~

10-0€°2



91

uoT3oung wesaals dduedINISTg “OTT 2aInbTd

172780700007 = U LAAMId 00°007= Wy'ld 00°1 = ¥v'eic2 = BWIL0RT = STiav

62 -2 w4

10-E¥° 2~

10-€v°2



92

1°0°8°0°000001= FU'INION3d 00701 = Wv'id 00°1 = My‘6ey’2

nOﬂuoqsm.ﬁmwaum soueqIN3lsSTd mvﬂu oanbTa

. 82

-8

= SWIL'09° = sniavd

Wi

20-48° 1~

T0-18°1



93

uoT3ouUNnd WeaIlsS soueqanistd o1 °anbtdg

1°078°0°000001= MY ANAINAL 00°00T= WY“fd 00°1 = Wy'9rc 2 = @WIL'0R" = SNIQW. -

62 -€ 104

10-$¥°2-

10-¢%"2



94

muﬂomuno\w odueqIN3STA *©ZT °ANBTI

1'28°0°0001 = Fu'IN4W3d 00°001= W'ld 00°F = ¥y'12g-2 = SWIL0Y" = Sniave
-
2 -1 10od

10egL C-

/ , _ ‘ . toere'e



o K3ToT3a0A eoueqinistd °*dZT 9InbTL
n.o,m.o.ooon = AY'LNADHA 00°001= Wv‘id 0071 = dy'¥ey¥-2 = AWLL'0¥° = snldvy
92 -F L0d

10¢€E°§~

10+€£°S



96

A3TDOT3I0A edurRqIN}STd

1°0°9°0°00001 = FY LNAMAd 007001 WY'Id 00°1 = My'RiC 2

92 -2 W0ud

*0ozT 2anbrg

= BILO0Y = SOV

{&.

10490° 9~

1049079



97

- R31dT3a0) @dURGINISTA  "PTT 2anbTd
1°5°8°0°000001= FU'INACHAd 00°01 = Wy'Id 00°T = uv'esy'z = !.p..ot = sniava

92 -¢ Jlod

i |




98

A3TOT3I0A ooueqaInlsT@ *oZT oanBTg

T°2°8°0°000001= M4 IN4M34 00°001= W'ld 00°T = ¥v'91e-2 = BWIL0% = SNIavY

92  -f JouW

10+82°9~

10+82°9



99

1°0°g'0- 000t

A3TOoT33I0A ®DURQINISTA *ecT oanbtg

T RCINEME 00°001= W' Id 00°T = Wy'izg-2 = BIL'09° = sniavM

82 -¥ oW

10+E8° €~

10+€2°¢C



100

K3TOT3I0A ®dURIANAST@ "GET INbTJ

1°0°9°0°000€ = AN‘INAJYAL 00°001= Wy'Id 00°1 = Hy'vee'2 : HAWILS09° = salavH

¥ -y JLOUd

10+EE° G~

10+2E°S



101

Nﬁﬂo..nuho\w_ 20URqINISTA °*OfT 2aInb1tg

1737890700001 = M LNHIMAd 00°00T= Wy*Id 001 = ¥velc 2 = AWIL09" = SNjov

24 -2 wu

10+90°9~

XL " : s S \/w _N;;T«h s

10+90°8



- 102

A3TOT3I0A ooueqaInysTg ~PET °InbTd

£°0°8°0°000005= S¥°‘INZDHAd 00° 01

14

Wy'ld 00°1 = Ny eev°Z

-8

10id

= SWiL'09°

= SNIAvE

~ jooege 0~

L

00+SE°Y



103

A3TOTIIOA 90URQINISTA °OET 9INBTI

T°27°H°0°00000T= HH'INARAd 007001 kr‘1d 0071 = Wy'91c-2 = MWEL09T = SNiavy

R - € IoW .

10+82° 9~

»,*‘
e
k=
e
b
b

10+62°9



104

A3TOT1II0A edueqanisTg °*eHT 2aInbtd

3

170°8°0°0001 = FYIN4OMA 00°00T= WY'14 00°1 = HY'128°2 © = BWIL'08° = Sniavd
I
10+c2°¢-
F
4 " . i ST | .A_.ﬁm’«m .. | o °
% 3
10e€L°¢



105

A3ToTaI0A odoueqanastg ~AVT SInbTd

1°0°8°0°0008 = JH'INAOHAd 007001z Wy'ld 00°1 = Hy‘vav-2 = AWKL'08° = SIdvH
0g - ¥  ioWd
10+€€°§~
4t : { Y -4 >#n of
aal S Bk iwkﬂdq .

10+£€°¢



106

Mu._..UHuHob ooueqanysTq@ ‘OPT °2anbrdg

1707870700001 = Mu'LNHMAd 00°00T= W14 0071 = WY'RIC'Z = WWIL'0R" = SNIQYN

of -2 JoW

10+490° 9~

10+80°9



107

A3ToT3I0A @DOURGINISTC PRI 9anb1d

1°0°9'0°000001= F¥'INAOH3d 00°0% = Wv‘Id 00°1 = ¥v'68y'Z = BNIL'08° = sniav
€ -§ oW

Joosoe »-

00+SE°Y



108

A3TOT3I0A odueqINySTA °*OFT °anbTg

T°0°6'0°000001= Y INAMAd CO°001= Wy'ld 00°1 = ¥yiele:Z = WWIL'OR = SOIavH

of -t lod

10+82° 9~

T -4t 4
oo Kk«i«q
&‘

10482°9




109

UoTADUNg wWesIlS odurqInlsTtad “BsT oanbtd

1°0°g°0°0001 = FY'INTONAd 00°001= Wwy'id 001 = My'9IS'E = GWIL 09" = Snlavd

6t - l0nd

10-08" 1~

10-08°3



110

UOT3OoUNg WesIl§ oouedInistd “dST 2InbTd

1°5°9'0°0008 = FHINIOHAd 00°001= Wy'id 00'1 = Hy'¥ay'g = IWIL'09T = saiavd

6¢€ - ¥ lOod

10-2L° 1~

= =

10-2L°%



111

1°5'a'0°00001

6t

-2

SY'INADYAd 007001z wy'id 0071 =

1014

uoT3oUNg WesaJIls 20UedINISI

Uy 96¥°€

.

*OGT @anbta

ANIL09° = sniavy

“qi

10-18° ¢~

10-19"8



112

so_ﬁuossm wesI3s moﬁmnuﬁvmﬂa *PGT. @anbtd

1°0°@°0°000001= FH INAOUAd 00°0F = Wv‘Id 00°1 = ¥V 2£S°€ = @MIL09" = sniavd

&€ -s§ oMW

- jee-1°2-

o

0-11°¢



113

uoT3oungd wesiis mocm.oﬂsumﬂm *2GT 2anbtd

1°2°8°0°00000¥= FY INIONId 00°001= Wy'id 00° 1 = Hy'9l¥'t = awiL'09" = snigvd

[:1> - £t 1014

10-41°2~

o
I
*

0-11°2



114

1'3°a'0°0001

K2TOoT3I0A @OURIINISTA

FY'ANIDHId 00°001= Wy'Id 00°1 = Hy'9lG'¢€

or

Nregl)

= a@Wii‘o9”

sniavy

*eQT 2aInbrtd

.y

10+€1° 9~

18+C3°Y



115

A3TOoTRI0A odoueqanysTtqg d9T 9InbTd

1°0°8'0°000€ = D4 LNIOYI4 00°001= Wyv'id 00°1 = My'¥sv'E = AWIL'09° = Sniavid

oy - ¥ Loid

50+9L "G~

10+94°S



116

A3TOTRI0A odoueqaInasTa P91 °aInbTd

1737840700001 = FW'INIOMAL 00°001= Kv'ld 00°1 = Uy 96¥’'E = AwlL‘09" = sniavd

o -2 loid

10+62°8-

10+52°¢



117

KaToTaa0) @ouRqIN]STg °P9T SInbTd

1°95°8°0°000001= JU'INITUAL 00°01 = Ky'ld 00°F = HV‘2ES°E

oy

404

= HWNIL09° =. SnIOVM

“ 4

00219~

00+21°9



118

A3 TOT3I0A 9duRgINlSTIQ

1°3°8'0°000007= FH INADYAd 00°001= Wv'id 001 = HY‘OLY'E

114 - & Joud

‘29T oanbtdg

= GWIL'09° = sniavy

20+€L° [~

20+€1°1



119

1°0°8'0°0001

S

dU°ANTOHId 00°001= Wy Id 0071

d0d

= yy'otoy

uoT3IOUNI weeIlS 9OURqINISTA

*eLT 2anbtd

ANIL09° = Snluvd

* §

10-8¢° 1~

.
18-58°1



120

1°2°8'0°000¢

uoT3oUN WeseIls oouedqiInlsId

= FY'INIOUHAd 00°00[= Wyv'id 00°1 = Hy've6 € = @wIL'09° = sajavd

Sy - ¥

L0d

*qLT °anbTg

i

10-%L°1-

10-9L°1



121

1°2°g'0°00001

114

-2

uoT3dUNd WeSI}S SDURINISTA

a¥*INGOHAd 00°001= Wv'id 60°1 =

Lod

*D/T ©anbTtd

awiL*08" = sniavd

L

. j>7>~§

fo-66°2~

L g} z

10-66°2



122 -

UOoTIOUNT WeS IS m.od.m&uﬂ.pmﬂn *pLT 2anbTd

114

-$

! 10nd

1°0°8°0°000001= FY'INIOUAL 00°01 = Wy'ld 00°F = Hv'vS0°¥ = SHIL°08° = Sniavi

3

20-90°2~

20-40°2



123

170°8'0%0001

A3TOT3I0A @0URqIN]STA

= FU'INAJYIAD 00°001= My id 00 § = HV'OIO'Y

9y -1 Jlod

*egT danbrtd

= FWIL09° = Sniavy

L{:14 79 &

10e9L°Y



124

1°D°8°0°000¢

K3TOoT3I0A SdURIN]STA

Y LNIJUId 00° 0013 Wyv'ld 00°'1 = Yy ¥86°€

¥ - ¥ IO

*qgT @anbtg

= dAwll‘09" = sniavd

10+€€° 9~

R

10+4€€°Y



125

A3ToTaI0A 9dURgAN}STQ °“O8T °InbBTA

T1°0'€ 0700001 = ¥ LNIONUJ 00°001= KV'Id 00°T = Ny'@e6'f = AWiL09° = Snilavi

9r -2 10'}d

20+2L° 1~

20+31°%



126

R3TOTAIOA SOURQIN3STA *PST 2IN6TA

1°0°9°0°000001= FY'INADUAd 00°0F = Wy'Id 00°1 = HV'VSO'¥
14 -§ Jloud

= ZMIL09° = sniava

00+80°8~

00+50°8



127

UOT3IOUN] WesJI3lS SoueqaIN]sSTd “B6T SanbTJd

1°9°8°0°000F = #M'INAOH3d 00°001= WY’ Id 00°L = HV'P8P'» = 3WIL'09° = SiqGvH

1< -1 o

10-e%°2~

10-89°2



128

UOT3OoUNJ WeoIl}S odurgIN3ISTd °JdET 2anbTtd

1°2°g'0°0008 = JN INJOHEd 00°001= my‘ld 00° 1 = HY'94S¥ = gwil'08" = sniavd

IS - ¥ LOWd

10-11°¢~

10-11°¢



129

1°0°8°0°000001= Tu'INOUAd 00°01 = Rv‘Id 00'¥ = Wv'80S'% = ZWIL'09" = sniawvu

| UOT3OUNJ WS IS edueqIngstq - ~O6T SIN6TL

is

Lo

st

b

zo-00



K3TOT3IONA ooueqinastq ~°0C 2InbTd

130

1°0°9°0°0001 = FY°'IN3IOHI4 00°001= Wy'Id 001 = Hy'vary = AWIL09° = Sniavd

(4 -1 o4

10+99°¢-

10+88°E



131

K3TOT3I0A muqmﬂuﬁumﬁa *qog °anbTd

I 0°g'070008 = FY'INAOYId 007001z Wy'id 00°1 = Hy‘9GG'¥ = WIL09° = sniavd

2% -y 1oy

10¢£0°S-

a

10+£0°S



132

A3TOT3I0A wuamnnﬁuwwm,,.. *9502 eanb1d

144

0

1°0°9°0°000001= Ju‘INIJUIE 00°01 = Wv'Id 00°F = NV'80S'% = EWIL'09° = sniavd

g i

Jooess s~

Fooerss



APPENDIX B



ERRORS IN THE USE OF NONUNIFORM MESH SYSTEMS

INTRODUCTION

Numerical studies of fluid;dynamics problems are quite often
concerned with flow around solid bodies where fairly large velo-
city gradients are encountered. In the vicinity of the body, it
is often convenient to use a mesh system which is smaller than the
mesh system imposed over most of the flow field and which might
evenvbe a nonsquare mesh system. Examples of this approach are
seen in the studies of Whitaker and Wendel [l1] and Thoman and
ézewcyzk [2] . This study is concerned with a comparison of the
numerical‘error that arises in the solution of the Navier-Stokes
equations‘when a nonsquare, nonuniform mesh system is used. This
type of problem is of intefést because the velocity (or vorticity
or stream function) can change rather sharply and the effect of
thg change is more pronounced in certain regions than in other re-
gions. Therefore, it is felt that by i;creasing the density of the
mesh.points in the regions of greatest change, a marked improvement
"in the overall accuracy of the solution could be effected without
the expense of increasing the density ;f the grid system every-

where.
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The problem chosen for study is that'of Poiseuille flow in a
pipe for which there is a well-known exact solution (see Schlichting
[3]1). This example arose during an investigation to determine
numerically the onset of turbulence in Poiseuille pipe flow. The
mathematical problem consisted of axisymmetrically perturbing the
Poiseuille velocity distribution at some point in the pipe'(see‘

-Crowder and Dalton [4]). Since the perturbation is expected to
generate significant gradients of the vorticity and the stream
function, it was felt desirable to use a denser mesh system in the
vicinity of the perturbat}on és well as on the boundaries. The
denser mesh system should allow for a more accurate representation
of both the vorticity and the stream function. In checking the
calculation procedure for the perturbed flow, it was noticed that
varying numerical errors were obtained for the unperturbed solu-
tion when various nonuniform, nonsquare grid representations were
used.

Investigation of the literature forlnonuniform mesh systems
showed the following: ‘For a uniform mesh system, Young [5] gives
the error term for a second partial derivative as beha&ing(like
(h?/4)a‘U/ax4, where h is the uniform mesh spacing in the x direc—
‘tion. Young then gives a difference representation for the same
second deriva£ive over a nonuniform mesh system, i.e., when the
mesh spacing goes like h on one side of the grid point in guestion

and like sh (0 < s £ 1) on the other side. However, no error term
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is given for the nonuniform mesh case. BAnalysis of the error in-
3

volved yields that the error term goes like (1 - s)(h/3)3"U/ax®.

Hence, a lower order error in h is introduced for a nonuniform

mesh system than for a uniform mesh system. It is also noted that
3 4

for some physical problems :xg is significantly greater than

o

u

4

Hence, we choose to solve the problem of unperturbed Poiseuille
pipe flow in order to obtain comparisons of the effect of the grid
system on the accuracy of the finite-difference approximations to

the Navier-Stokes equations.

N

GOVERNING DIFFERENTIAL EQUATIONS

A nondimensional axisymmetric form of the Navier-Stokes equa-—

tions for viscous, incompressible flow in a circular pipe is

Gt - Fz(g)r + E£§5.= %[(%‘(rG)r>r + Gzz] (1)

and
+F
F__ + r(—-’-‘-) = - raG, (2)
ZZ r
r ..
where G is the vorticity, F is the stream function, and R is the

Reynolds Number. The Reynoldé Number is a parameter and is given

by

where W is the average axial velocity component; D is the pipe di-

ameter and v is the kinematic viscosity of the fluid.
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The boundary conditions for the above differential equations

are:
G = 2r, Fz =0on 2z =0, (3a)
GZ = Fzz =0onz =1L, (3b)
G=F=0onr =0, (3c)
- 1 Fy
F =0, F=0.25 G = - —-(F - ——) onr =1, (3d)
r r \'rr r

where z = 0 is the upstream boundary, z = L is the downstream
boundary, r = 0 is the centerline of the pipe, and r = 1 is the
wall of the pipe. The initial conditions of the problem are given

by

1 1
_ = = : < <
F = ) r° - . r £ [ 0 zZ L (4a)

0=sr =1,
and

G = 2r. {4b)
With the above boundary and initial conditions, equations (3) and
(4), equations (1) and (2) admit to an analytic solution,

1.2 1
TF > r 2 r (5a)

and

"G = 2r, (5b)
-Tﬁisjanaiytic solution is the steady flow solution to the above
problem. Since we know this solution, we can use it as a comparison
to determine the accuracy of the numerical procedures used to solve

the mixed boundary-initial value problem.
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For a derivation of the governing equations, see Schlichting
[3]. For a discussion of the boundary conditions see Crowder and

Dalton [4].

DIFFERENCE EQUATIONS

The solution of the differential equations is obtained by the
use of the method of finite differences. For this technique, a
net of grid points is introduced onto the region upon which the so-

lution is to be found. We have chosen not to use equally spaced

grid points, therefore any function ¢ is given by

_ N
Q(r,z,t) - @(ri,zj,tn) éi'j'
where
i
r, = X Ar , Ar; =0, 1 £ i € Imax (0 <r, = 1), (6a)
i m=1 m i
% A A 0, 1 i J: (O L) (6b)
z, = -4 z, = 0, = < Jmax £ zZ, s
J m=]_ ml 1 J J ’
and
% )
= = = . . =
tn 2o Atm, At _ 0, At2m + 1 Ath, (0 tn <T). (6c)

For the above grid, central differences in spacé‘are used while
R B

forward differences in time are used. The operators which we will

use are defined as follows:

n 1 bz541 .n
) = (Q. _) = - - .
+ ‘ -
z i,j'z Azj Azj+l Azj i,j-1

Az : Az
Gt L I g B
Azj Azj+l i, AZ i,j+1
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< € < Zj+l (7a)

Az Az
825 2Z4+1
31 Yz (FiBety)e 25,

n 2 1 n
g = (3% ) = [ 8t
2Z i,j'zz Azj + Azj+l Azj i,j-1

1 1 n 1 n
- + ; ® + 3.
(Az. Az ) i,5 Az, 1,'+l]
j J j+1 *td

541 +
(Az4 - Az441)
3 z (r lz lt )
_ i (AZ2 - Az . Az + AZ2 ) @ (r.,8,t )
12 1 j+1’ “zzzz ! !
(2, ; =8 =2,,.), (7b)
, Ar .
t. = (@2 Ve = 3¢ +1Ar A;+l @?_1 '
‘ +J i i+l i +J
Arj+] sn Arj n ]
+ - T ¢, .
( Ar ) i,3 ri+j i+l1,j
é&_A_riil. § t ) ' < < ) (7 )
3! rrr(g'zj' n'’ (ri—l 5 i+l <
n 2 1 n
g = (3% ) = [ g™
rr. i,j'rr Ari + Ar, i+l r. i=1,73
1 1 1 n
- + e, . +—E— 5" .]
_(Ari Ari+l) i,j Ari+l i+l,3
(Arj - Arj4q) 1 _
* 3 e AT (Ax% - ar br, .,
2 <
AT ) e (50 %5 AN IR Ti+1) (74)
ahd '
(7e)

(tn =% = tn+l)'
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Using equation (7) allows equation (2) to be approximated by

] Fg+},k+l _ (F?+% k+1 1 (FP+%4 k+1
k "1i,3 i,j/rrx ri i,j/r
_ n+l,k n+ly k
=P Fiy T (Fi,j)zz (8a)
and
n+1l,k+2 n+1\ k+2
P Fi,5  ~ (Fi,j>zz
+ + : + +
R T (Fg ;) ktl  1- (Fn 1\ k+l (8b)
k 1,3 i,j/rr r.

i,3j/r
i ’J‘

The multipliers, Py in gquation (8) are analogous to the
Wachpress—Goode parameters. The Wachpress-Goode parameters are
derived for Laplace's equation on a square region and are given by
k+1

P =D (%)?+1 k=1,2,""",m (9)
where a and b are reSpectively the maximum and minimum eigenvalues
of the operator matrix associated with the difference equations
which approximate the Laplacian differential equation on a square,
equally spaced grid (sge Varga [6]). Since our differential equa-
tion is not the Laplacian and we allow our grid to be unequally
spéced but rectangular over the axisymmeétric flow field, then no
analytic derivation of the values which pk should have are avail-
able, Nevertheless, if we use ﬁhe above formulation for the pk
for our problem, we find that the maximum and minimum eigenvalues
of the operator matrix for the radial derivative; are always larger

and smaller, respectively, than those for the operator matrix for
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the axial derivatives. Therefore a and b are taken as the maximum

and minimum eigenvalues of the operator matrix for the radial de-

rivatives. Numerical experimentation also showed that with this

choice of a and b that use of five parameters for the iteration

was optimal. The actual values of the Pr used in the calculations

are given in Table 1. Again, using equation (7) allows equation

(1) to be approximated by

+1\ +
[Atl + ;%-<F? % z * r;R] G? %
n+l i +J i ']

~

- [l— (FF+% P T (G?+} -+ G?+%>
r; \i,j/z " r.R i,j/r " R \'i,j/rx

= Atl G?,j - %T'<F2,j)r (G?,j)z + %'<G?,j>zz

n+l 1
and
1 nt2 , 1 s/ _n+2 n+2 1l 7 n+2 _
At Gi,' +kr. (Fi,')r (Gi,')z R Gi,')zz
n+2 J i J J J
[ 1 _ _é_(Fn+l‘ _ 1 ] Gn+l
Atn+2 ri i,j/z riR i,3

+ [L— (F?+% + —l—] (G?+% + l-(G?+%
ri i,j/z riR i,j/r R 1,1/xrxr,

(10a)

(10b)

where we allow the time step, Atm, to vary from step to step in

the solution process subject to the restriction

At At

2m+l = “Fom+2

4

(11)

The time step is used as a parameter to speed the iteration pro-

cess and to insure convergence. The time step is selected such

that the average number of iterations for the solutions at the
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TABLE 1

p, for use in equation (8)

k
Grid pk
14.4554279116205
45.5195753385026
I '143.339356791502
451.370010651717
1421.34645414991

14.4366669994227

IT 46 .5707761839117
and 150.231157542023
IIX 484.625822152668
1563.33873305511

14.6371115664442

Iv 46.5190382231239
and 147.844805813021
VI 469.874000856377
1493.33333333333

14,5031251532618
33.1157808959826
v 75.6150783201431
172.656054444876
394.235036169115
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2m + 1 and 2m + 2 times to converge is kept near a minimum,
For the derivatives involved in the boundary conditions, we
use the differentiated Lagrangian interpolation formulas to obtain

their finite-difference representatibn

G = 2ri, (l2a)

il

n —

n
(Gi,Jmax)z =0, (12¢)
(F, ) =0, (12d)

i,Jmax’ zz

G 4 =0 (12¢e)
Fﬁ’j = 0, (12£)
GI;max,j' _(Fgmax,j)rr + (F?max,j)r ! (129)
?max'j = 0.25 (12h)
and
(F;max,j?; = Of (121)

The initial conditions are given by

@ . = 2r, (13a)
i,3 i
and
_ 1 2 1 .
F;‘j =5r -7t (13b)

The difference equations, equations (8) and (10), are solved on various

grids, specified later, subject to the boundary and initial condi-

-
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tions, equations (12) and (13). The method of solution used is an
adaptation of the Alternating Direction Implicit Method of Peaceman
and Rachford given by Young [5].

Before explaining the calculation p;ocedure, we set forward
the convergence tests that are applied. For the stream. functicn
we used

' n,4,k+2m n,4,k ,L,k+2m—l|] (14)

F.'. -F '] s e [@ax |FT
i,j 1,3 fL. . i,]
i,3
where m is the number of p values used in the iterative procedure

M\ » »
and k is the stream-function iteration counter. We chose ¢ _ such

£
that e_ = 1.0 X 10°°,
The tests used for convergence of the vorticity are
+ ‘ _ .
lG?'% 1. G?'%l < ¢_ [max \G?'%\ﬂ i # Imax, (15a)
IJ IJ i i:j IJ —J
and
+
|Gn'L 1o_aat | = ey max ‘Gn'L | (15b)

. . 171
Imax,] Imax, ] Imax,]_J

bl 4
In equations (14) and (15) % is the vorticity iteration counter.
Equation (15a) was used where i < Imax and equation (15b) was used
when i = Imax. We demanded that e = 2¢ , and that ¢ 2 g_ at
b 9 9; ¢

all iterations}

The solution to the difference equations is accomplished
iteratively by first advancing the vorticity using equations (10a)

and (l0b) for alternate time steps. Then equation (8) is iterated

to convergence and the vorticity is recalculated on the basis of
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the updated stream function. This sequence is continued until the
vorticity converges. Then the process is begun again with the al-

ternate equation (10a) and/or (l0b) for the next time step.

GRID SYSTEM

The notation used for specifying a grid, (a, b, c¢), means that,
starting at position a, increment by c until b is reached. The
grids which we will compare are the following:

(0.0, 0.5, 0.1), (0.5, 0.7; 0.05),
(0.7, 0.9, 0.1), (0.9, 1.0, 0.05)

z, = (0.0, 1.9, 0.1), (1.9, 2.1, 0.05),
(2.1, 5.0, 0.1)

Grid I r,
i

Grid II r, = (0.0, 0.5, 0.1), (0.5, 1.0, 0.05)
z, = (0.0, 1.9, 0.1), (1.9, 2.1, 0.05),
' (2.1, 5.0, 0.1)

Grid III r, = (0.0, 0.5, 0.1), (0.5, 1.0, 0.05)
z. = (0.0, 0.2, 0.05), (0.2, 1.9, 0.1),

j
(L.9, 2.1, 0.05), (2.1, 4.8, 0.1),
(4.8, 5.0, 0.05)
Grid IV r, = (0.0, 1.0, 0.05)
Zj = (0.0' 5.0' Onl)
Grid v ri = (0.0, 1.0, 0.1)
zg = (0.0, 5.0, 0.1)
Grid VI r, = (0.0, 1.0, 0.05)
2y = (0.0, 5.0, 0.05)

Grids I, II, and III were used because they give a dense grid

system in the region of the disturbance function and/or the flow-

field boundaries. Grid IV gives an additional density in the radial
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direction, which is the direction of most uncertainty in the dif-
ference approximations.

Grids V and VI furnish comparisons of the results on square
grids as well as an estimate qf the grid-size convergence.

The problem which was of major interest to the authors was
the stability of Poiseuille pipe flow. For this problem it seemed
deéirable to have a denser mesh system in the vicinity of the point
atrwhich the disturbance is applied (r = 0.6, z = 2.0). Therefore,
Ehis is the common property of the nonuniform Qrids. In order to
cut computation time it ‘is also desirable to keep the number of
mesh points to a minimum so the grids are made as sparse as possible.

The experimental error analysis of the solution of the differ-
ence equations on the above grids which we present is shown for
béth sing}e—and doubie-precision calculations of the solution for
each grid. We define the errors e(F) and e(G)>at any grid point by

'e(Fi'j) = (Fi,j - ﬁi)/ﬁi (lea)

e(Gi'j) = (G;,j - Ei)/éi' (16b)

where ¥ and G are true solutions given by equation (5) and F and G
are calculated from equations (8) and (10) with boundary and initial
conditions, equations (12) and (13).

The relevant quantities for comparison are

o(F) = é—z Ze(Fi’j), (17a)
i J
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=1
e(G) = Z Ze(Gi'j)’ (17b)
i ]
Imax-1
1
e (@) =& Z Ze(Gi'j) (17¢)
i=l 5
and
e (G) = —* Y ete ) (17d)
B dmax £ Imax,]j
J
where N = (Imax) (Jmax) and N; = N - Jmax. The abéence of limits

on the summation implies summing over the range of the index.

RESULTS

The solution to equat;ons (8) and (10) was obtained at four
consecutive time steps for each grid system. The errors, as speci-
fied by equation (l?),uat each of these time steps are presented in
Tables 2-5, (the seqond number in each column is the power of 10
which should multiply the first number in order to obtain the true
value) which show that Grid II is the best of the nonuniform Grids
I, II and III and that Grid I is the worst mesh system tested based
on a comparison of the-errors. Thé mesh systems with uniform grid
spacing, Grids IV, V and VI, are all significantly better than |
Grids I, II and III. The grid system with 0.05 square spacing,
Giid VI, gives a befter representation of the stream function and
boundary vorticity than was obtained from Grid IV, the uniformly
spaced, nonsquare mesh system. However, Grid IV gives a better

representation of the interior vorticity than does Grid VI. The
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grid system with O.l_square spacing, Grid Vv, has less error for all
times shown as seen in Tables 2-5; this is true for both single and
double precision. The overall vorticity values are seen to have the
least error for both single~ and double-precision computation on
Grid V for the three greatest time values as seen in Tables 3-5.
Grid VI has the least error for both single~ and double-precision
calculation of the interior vorticity for all time levels shown.
However, the error in boundary vorticity for Grid VI is greater than
that for Grid V. Therefgre, we rank the grid systems in order of

“

increasing preference from the standpoint of errors produced in
the solutions és follows:- I, I1x, 11, IV, VI, and V, Also due to
the magnitﬁae,of the chapge in the errors, it is evident that use
of double-precision calculations for the nonuniform grids, Grids I,
II and III, effects no appreciable improvement in the accuracy of
the solution. For the uniform grids, Grids IV, V and VI, double-
precision calculations show an improvement consistent with the
increased number of available digits for the computation,

The increase in the error of the boundary vorticity over the
interior vorticity obtained in all of the solutions is expected.
Since the value of the boundary vorticity is calculated by differ-
encing the stream function, any errors in the stream function are
magnified in the value obtained for the boundary vorticity. This

magnification is an inverse function of step size in the radial

direction. Therefore, the errors in the values of the boundary



Grid
System

I

Il
I1

111
II1

IV

S*

D#**

Iv D

ATAS
Vi

e(F)
1.815 -3
1.819 -3
3.240 -3
3.245 -3
3.240 -3
3.245 -3

-1.232 -5
-5.564 -15
-3,211 -6
~1.739 -15
~1.492 -5
-4.248 -15

*

*%* D indicates double-precision

TABLE 2

Mean Relative Error

Time Step 1

Time 0.01
e(G) eI(G)
-1.041 -2 -4.859 -5
-1.045 -2 -4.815 -5
-4.,216 -3 -1.996 -5
-4.272 -3 -1.953 -5
-4.,278 -3 -1.955 -5
4,385 -5 -4,288 -7
1.601 -14 -6.432 =17
1.930 -6 -6.908 -7
-2.086 -14 -1.010 -16
4.991 -5 -4.278 -7
1.562 =14 -7.876 =17

S indicates single-precision

calculation

calculation
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eB(G)
Y 1451
- .1457
-6,716 -2
-6.807 -2
-6,734 -2
-6,816 -2
9,293 -4
3.376 -13
-1.432 -5
-2.193 ~14
1.057 -3
3.297 ~13



Grid
System

I S*
I D**

II s
II D

III s
III D

Iv s
IVv D

Vi s
Vvib

e(F)

1.808
1.813

3.236
3.242

3.236
3.242

-1.242

-3.584

-1.744

~-1.484

TABLE 3

Mean Relative Error

Time Step 2

Time 0.02
e(G) e (G)
-1.015 -2 -9.736 -5
-1.020 -2 ~9.651 -5
-4,103 -3 -3.993 -5
-4,113 -3 -4,007 -5
-4.162 -3 ~3.924 -5
8.332 -16 ~2.201 -16
4,593 -5 8.741 -7
1.510 -14 -1.498 -16

* S indicates single-precision

** D indicates double-precision

calculation

calculation
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e_(

-6,592

-6,601

9.232
3.372

6.872
1.137

9.819
3.201



Grid
System

I
I1

II

III
III

Iv
Iv

VI

S*

D**

Vi D

e(F)

1.801
1.806

3.233

3.238 -

3.233
3.238

-1.308
-5.545

-4.646

-1.493
-4.374

*

TABLE 4

Mean Relative Error

Time Step 3

S indicates single-precision

*%* D indicates double-precision

Time 0.031
e(G) e; (G)
-1.007 -2 -1.467 -4
 -4.099 -3 -5.948 -5
-4.065 -3 -6.100 -5
4,197 -5 -1.438 -6
1.596 -14 -1.608 -16
-6.380 ~7 -1.882 -6
5.457 =16 -3.315 ~16
4,540 -5 -1.310 -6
1.395 -14 -2,305 =16
calculation

calculation
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eB(G)

- .1391

9.102
3.384

1.180
9.317

9.796
2.975



Grid
System

I

II
II

I1II
ITX

Iv

S*

D**

iv D

Vi
Vi

1.794
1.800

3.230
3.235

3.229
3.235

-5.559

-1.781

-1.534

*

TABLE 5

Mean Relative Error

Time Step 4

Time 0.042

e (G) | eI(G)
-9.901 -3 -2.003 -4
-9.942 -3 -1.971 -4
-3.993 -3 -8.159 -5
-4,047 -3 -8.012 -5
4.088 -5 -1.921 -6
1.570 ~14 -1.889 =16
-4.,780 -16 -4,236 -16
4.914 -5 -1.723 -6

S indicates single-precision

*%* D indicates double-precision

calculation

calculation
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eB(G

- .1360
- .1366

-6.266
-6.347

-6.385
-6.355

8.968
3.335

3.698
9.493

1.066
3.142
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vorticity are seen to be consistent with the grid system used.

The results which are presented in Tébles 2-5 could be ex-
panded to show individual errors at grid points, or to show errors
for each grid line but this is unnecessary since the values pre-
sented are indicative of the results everywhere.

The reason that the interior’mean vorticity increases with
time is that the errors in the boundary vorticity are spread in-
ward slowly as the solution progresses. For time step 1 the points
at which the vorticity is significantly in error are on the bound-
ary only. At time step 4; the next two interior grid lines also
show noticeable error in the vorticity. Table 6 shows the com-
puting time expended to calculate the solutions for the four time
steps presented in Tables 2-5.

The sequence of times obtained for either single-~ or double-
precision calculations, using the same convergence criteria, is
as expected since the time required to compute the solution in-
creases with an increasing number of grid points. However, when
we compare the times involved between single-~ and double-precision
calculations, we note that double-precision calculation takes less
time for Grid V than does single-érecision. This is the reverse
of what happens for all the other grids. Therefore, from the
standpoint of computation time involved in the calculation, the

grids are ranked in increasing order of preference as VI, III, IV,

II, I and V for single-precision and as VI, IV, III, II, I and V

-
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TABLE 6

Computation Time in Minutes

‘ Grid I II I1x Iv v Vi
Single

1l.16 1.38 1.51 1.48 .95 2.79
_. . Precision
Double

. . 1.22 1.54 1.60 1.72 .83 3.32
Precision
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for double-precision calculation. Hence, the preferred grid system

from this standpoint is Grid V with double-precision calculations.

; SUMMARY

On the basis of the results obtained, we conclude that calcu—
lation of the stream function and vorticity for Poiseuille pipe
flow is most accurately and efficiently accomplished using double-
precision calculations on Grid V, a square, equally spaced mesh
system of 0.1 grid size. This result is in direct contrast with the
original hypothesis set out in the introduction, i.e., that non-
uniform and nonsquare grids_should allow an increased accuracy in

the representation of the vorticity and stream function.
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